Is Every Rational Number an Integer

Every Integer is a Rational Number but a Rational Number need not be an Integer. Check out the statements, examples supporting whether or not All Rational Numbers are Integers.

We know 1 = 1/1, 2 = 2/1, 3 = 3/1 ……..

Also, -1 = -1/1, -2 = -2/1, -3 = -3/1 ……..

You can also express integer a in the form of a/1 which is also a Rational Number.

Hence, every integer is clearly a Rational Number.

Clearly, 5/2,-4/3, 3/7, etc. are all Rational Numbers but not Integers.

Therefore, every integer is a Rational Number but a Rational Number need not be an Integer. Check out the following sections and get a complete idea of the statement.

Determine whether the following Rational Numbers are Integers or not

(i) 3/5

3/5 is not an Integer and we can’t express it other than a fraction form or decimal value.

(ii) 6/3

6/3 is an integer. On simplifying 6/3 to its lowest form we get 6/3 = 2/1 which is an integer.

(iii) -3/-3

-3/-3 is an integer. On reducing -3/-3 to its reduced form we get -1/-1 =1 which is an integer.

(iv) -13/2

-13/2 is not an integer and we can’t express it other than a fraction form or decimal value.

(v) -36/9

-36/9 is an integer as we get the reduced form -36/9=-4 which is an integer.

(vi) 47/-9

47/-9 is not an integer and we can’t express it other than fraction form or decimal value.

(vii) -70/-20

-70/-20 is not an integer and we can’t express it other than fraction form or decimal value.

(viii) 1000/-10

1000/-10 is an integer as we get 1000/-10 = -100 on reducing to its lowest form and -100 is an integer.

From the above instances, we can conclude that Not Every Rational Number is an Integer.

https://www.youtube.com/watch?v=9yvtLN_24G0