

FINAL NEET(UG)-2019 EXAMINATION

(Held On Sunday 05th MAY, 2019)

CHEMISTRY

8. pent-2-en-4-une is :-

- 1. Under isothermal condition, a gas at 300 K expands from 0.1L to 0.25L against a constant external pressure of 2 bar. The work done by the gas is :-[Given that 1L bar = 100 J]
 - (1) -30 J
- (2) 5kJ
- (3) 25 J
- (4) 30 J

Ans. (1)

- 2. A compound is formed by cation C and anion A. The anions form hexagonal close packed (hcp) lattice and the cations occupy 75% of octahedral voids. The formula of the compound is :-
 - $(1) C_2 A_3$
- $(2) C_3 A_2$
- (3) C_3A_4
- $(4) C_4 A_3$

Ans. (3)

- 3. pH of a saturated solution of Ca(OH)₂ is 9. The solubility product (K_{sp}) of $Ca(OH)_2$ is :-
 - (1) 0.5×10^{-15}
- (2) 0.25×10^{-10}
- (3) 0.125×10^{-15}
- $(4) 0.5 \times 10^{-10}$

Ans. (1)

- The number of moles of hydrogen molecules 4. required to produce 20 moles of ammonia through Haber's process is :-
 - $(1)\ 10$
- (2)20
- (3) 30
- (4) 40

Ans. (3)

- 5. For an ideal solution, the **correct** option is :-
 - (1) $\Delta_{\text{mix}} S = 0$ at constant T and P
 - (2) Δ_{mix} V \neq 0 at constant T and P
 - (3) $\Delta_{mix} H = 0$ at constant T and P
 - (4) Δ_{mix} G = 0 at constant T and P

Ans. (3)

For a cell involving one electron $E_{cell}^{\Theta} = 0.59V$ at 6. 298 K, the equilibrium constant for the cell reaction

Given that
$$\frac{2.303RT}{F} = 0.059V$$
 at $T = 298K$

- $(1) 1.0 \times 10^2$
- (2) 1.0×10^5
- (3) 1.0×10^{10}
- (4) 1.0×10^{30}

Ans. (3)

- 7. Among the following, the one that is **not** a green house gas is :-
 - (1) nitrous oxide
- (2) methane
- (3) ozone
- (4) sulphur dioxide

Ans. (4)

The number of sigma (σ) and pi (π) bonds in

TEST PAPER WITH ANSWER

- (1) 10 σ bonds and 3π bonds
- (2) 8 σ bonds and 5π bonds
- (3) 11 σ bonds and 2π bonds
- (4) 13 σ bonds and no π bond

Ans. (1)

- 9. Which of the following diatomic molecular species has only π bonds according to Molecular Orbital Theory?
 - $(1) O_2$
- $(2) N_2$
- $(3) C_2$
- (4) Be₂

Ans. (3)

- 10. Which of the following reactions are disproportionation reaction?
 - (a) $2Cu^+ \to Cu^{2+} + Cu^0$
 - (b) $3\text{MnO}_4^{2-} + 4\text{H}^+ \rightarrow 2\text{MnO}_4^- + \text{MnO}_2 + 2\text{H}_2\text{O}$
 - (c) $2KMnO_4 \xrightarrow{\Delta} K_2MnO_4 + MnO_2 + O_2$
 - (d) $2MnO_4^- + 3Mn^{2+} + 2H_2O \rightarrow 5MnO_2 + 4H^{\oplus}$ Select the **correct** option from the following:-
 - (1) (a) and (b) only
- (2) (a), (b) and (c)
- (3) (a), (c) and (d)
- (4) (a) and (d) only

Ans. (1)

- 11. Among the following, the narrow spectrum antibiotic is :-
 - (1) penicillin G
- (2) ampicillin
- (3) amoxycillin
- (4) chloramphenicol

Ans. (1)

- The correct order of the basic strength of methyl **12**. substituted amines in aqueous solution is :-
 - $(1) (CH_3)_2NH > CH_3NH_2 > (CH_3)_3N$
 - $(2) (CH_3)_3N>CH_3NH_2>(CH_3)_2NH$
 - (3) (CH₃)₃N>(CH₃)₂NH>CH₃NH₂
 - $(4) CH_3NH_2>(CH_3)_2NH>(CH_3)_3N$

Ans. (1)

- **13**. Which mixture of the solutions will lead to the formation of negatively charged colloidal [AgI] I - sol. ?
 - (1) 50 mL of 1M AgNO₃ + 50 mL of 1.5 M KI
 - (2) 50 mL of 1M AgNO₃ + 50 mL of 2 M KI
 - (3) 50 mL of 2 M $AgNO_3 + 50$ mL of 1.5 M KI
 - (4) 50 mL of $0.1 \text{ M AgNO}_3 + 50 \text{ mL of } 0.1 \text{ M KI}$

Ans. (1,2)

Final NEET(UG)-2019 Exam/05-05-2019

- **14.** Conjugate base for Bronsted acids H₂O and HF are:-
 - (1) OH⁻ and H₂F⁺ respectively
 - (2) H_3O^+ and F^- , respectively
 - (3) OH and F, respectively
 - (4) H_3O^+ and H_2F^+ , respectively

Ans. (3)

- **15.** Which will make basic buffer?
 - (1) 50 mL of 0.1 M NaOH + 25 mL of 0.1 M $\,$ CH₃COOH
 - (2) $100\,\mathrm{mL}\,\mathrm{of}\,0.1\,\mathrm{M}\,\mathrm{CH}_3\mathrm{COOH} + 100\,\mathrm{mL}\,\mathrm{of}\,0.1\mathrm{M}$ NaOH
 - (3) 100 mL of 0.1 M HCl + 200 mL of 0.1 M NH_4OH
 - (4) 100 mL of 0.1 M HCl + 100 mL of 0.1 M NaOH

Ans. (3)

- **16.** The compound that is most difficult to protonate is:-
 - (1) $H \nearrow O \searrow_H$
 - (2) H_3C
 - (3) $H_{\circ}C$ O CH_{\circ}
 - $^{(4)}$ Ph $^{\circ}$ $^{\circ}$ $^{\circ}$

Ans. (4)

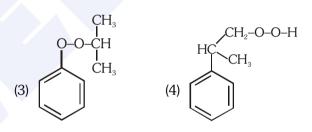
17. The most suitable reagent for the following conversion is:-

$$H_3C-C=C-CH_3$$
 H_3C
 CH_3
 H

cis-2-butene

- (1) Na/liquid NH₃
- (2) H₂, Pd/C, quinoline (3) Zn/HCl
- (4) Hg^{2+}/H^{+} , H_2O

Ans. (2)


- **18.** Which of the following species is not stable?
 - $(1) [SiF_6]^{2-}$
- (2) [GeCl₆]²⁻
- $(3) [Sn(OH)_6]^{2-}$
- (4) $[SiCl_6]^{2-}$

Ans. (4)

- **19.** Which of the following is an amphoteric hydroxide?
 - $(1) Sr(OH)_2$
- (2) $Ca(OH)_2$
- (3) $Mg(OH)_2$
- (4) Be(OH) $_2$

Ans. (4)

20. The structure of intermediate \boldsymbol{A} in the following reaction is :-

Ans. (2)

- **21.** The manganate and permanganate ions are tetrahedral, due to
 - (1) The π -bonding involves overlap of p-orbitals of oxygen with d-orbitals of manganese
 - (2) There is no π -bonding
 - (3) The π -bonding involves overlap of p-orbitals of oxygen with p-orbitals of managanese
 - (4) The π -bonding involves overlap of d-orbitals of oxygen with d-orbitals of manganese

Ans. (1)

- **22.** For the second period elements the correct increasing order of first ionisation enthalpy is:-
 - (1) Li < Be < B < C < N < O < F < Ne
 - (2) Li < B < Be < C < O < N < F < Ne
 - (3) Li < B < Be < C < N < O < F < Ne
 - (4) Li < Be < B < C < O < N < F < Ne

Ans. (2)

- 23. If the rate constant for a first order reaction is k, the time (t) required for the completion of 90% of the reaction is given by :-
 - (1) t = 0.693/k
- (2) t = 6.909/k
- (3) t = 4.606/k
- (4) t = 2.303/k

Ans. (3)

- **24**. Identify the incorrect statement related to PCl₅ from the following:-
 - (1) Three equatorial P-Cl bonds make an angle of 120° with each other
 - (2) Two axial P-Cl bonds make an angle of 180° with each other
 - (3) Axial P-Cl bonds are longer than equatorial P-Cl bonds
 - (4) PCl₅ molecule is non-reactive

Ans. (4)

- **25**. 4d, 5d, 5f and 6p orbitals are arranged in the order of decreasing energy. The correct option is :-
 - (1) 5f > 6p > 5p > 4d (2) 6p > 5f > 5p > 4d
 - (3) 6p > 5f > 4d > 5p (4) 5f > 6p > 4d > 5p

Ans. (1)

- The biodegradable polymer is :-**26**.
 - (1) nylon-6,6
- (2) nylon 2-nylon 6
- (3) nylon-6
- (4) Buna-S

Ans. (2)

27. Match the Xenon compounds in Coloumn-I with its structure in Column-II and assing the correct code:-

Column–I				Column-II		
(a)	XeF_4	(i)	pyramidal			
(b)	XeF_6	(ii)	square planar			
(c)	$XeOF_4$	(iii)	distorted octahedral			
(d)	XeO_3	(i∨)	square pyramidal			
Code:						
	(a)	(b)	(c)	(d)		
(1)	(i)	(ii)	(iii)	(iv)		
(2)	(ii)	(iii)	(i∨)	(i)		
(3)	(ii)	(iii)	(i)	(iv)		
(4)	(iii)	(i∨)	(i)	(ii)		

Ans. (2)

- **28**. Which is the correct thermal stability order for H₂E (E=O, S, Se, Te and Po)?
 - (1) $H_2S < H_2O < H_2Se < H_2Te < H_2Po$
 - (2) $H_2O < H_2S < H_2Se < H_2Te < H_2Po$
 - (3) $H_2P_0 < H_2T_e < H_2S_e < H_2S < H_2O$
 - (4) $H_2Se < H_2Te < H_2Po < H_2O < H_2S$

Ans. (3)

29. The correct structure of tribromooctaoxide is :-

Ans. (1)

30. An alkene "A" on reaction with O_3 and $Zn-H_2O$ gives propanone and ethanal in equimolar ratio. Addition of HCl to alkene "A" gives "B" as the major product. The structure of product "B" is :-

Ans. (3)

- 31. Enzymes that utilize ATP in phosphate transfer require an alkaline earth metal (M) as the cofactor. M is:
 - (1) Be
- (2) Mg
- (3) Ca

(4) Sr

Ans. (2)

- **32**. Which one is malachite from the following?
 - (1) CuFeS₂
- (2) Cu(OH)₂
- $(3) \text{ Fe}_3 \text{O}_4$
- (4) CuCO₃.Cu(OH)₂

Ans. (4)

Final NEET(UG)-2019 Exam/05-05-2019

- **33.** Which of the following series of transitions in the spectrum of hydrogen atom falls in visible region?
 - (1) Lyman series
- (2) Balmer series
- (3) Paschen series
- (4) Brackett series

Ans. (2)

- **34.** The mixture that forms maximum boiling azeotrope is:
 - (1) Water + Nitric acid
 - (2) Ethanol + Water
 - (3) Acetone + Carbon disulphide
 - (4) Heptane + Octane

Ans. (1)

35. For the cell reaction

$$2Fe^{3+}$$
 (aq) + $2I^{-}$ (aq) $\rightarrow 2Fe^{2+}$ (aq) + I_2 (aq)

 $E_{coll}^{\odot} = 0.24 V$ at 298 K. The standard Gibbs energy

 $\left(\Delta_{r}^{\circ}G^{\odot}\right)$ of the cell reaction is :

[Given that Faraday constant $F = 96500 \text{ C mol}^{-1}$]

- $(1) 46.32 \text{ kJ mol}^{-1}$
- $(2) 23.16 \text{ kJ mol}^{-1}$
- (3) 46.32 kJ mol⁻¹
- (4) 23.16 kJ mol⁻¹

Ans. (1)

- **36.** In which case change in entropy is negative?
 - (1) Evaporation of water
 - (2) Expansion of a gas at constant temperature
 - (3) Sublimation of solid to gas
 - (4) $2H(g) \to H_2(g)$

Ans. (4)

- **37.** Match the following:
 - (a) Pure nitrogen
- (i) Chlorine
- (b) Haber process
- (ii) Sulphuric acid
- (c) Contact process
- (iii) Ammonia
- (d) Deacon's process
- (iv) Sodium azide or Barium azide

Which of the following is the **correct** option?

	(a)	(b)	(c)	(d)
(1)	(i)	(ii)	(iii)	(iv)
(2)	(ii)	(iv)	(i)	(iii)
(3)	(iii)	(iv)	(ii)	(i)
(4)	(iv)	(iii)	(ii)	(i)

Ans. (4)

- **38.** Which of the following is **incorrect** statement?
 - (1) PbF_4 is covalent in nature
 - (2) SiCl₄ is easily hydrolysed
 - (3) GeX_4 (X = F, Cl, Br, I) is more stable than GeX_2
 - (4) SnF_4 is ionic in nature

Ans. (1)

- **39.** The non-essential amino acid among the following is:
 - (1) valine
- (2) leucine
- (3) alanine
- (4) lysine

Ans. (3)

- **40.** A gas at 350 K and 15 bar has molar volume 20 percent smaller than that for an ideal gas under the same conditions. The **correct** option about the gas and its compressibility factor (Z) is:
 - (1) Z > 1 and attractive forces are dominant
 - (2) Z > 1 and repulsive forces are dominant
 - (3) Z < 1 and attractive forces are dominant
 - (4) Z < 1 and repulsive forces are dominant

Ans. (3)

41. Among the following, the reaction that proceeds through an electrophilic substitution is:

(1)
$$N_2^{\Theta}Cl \xrightarrow{Cu_2Cl_2} Cl + N_2$$

(2)
$$\left\langle \begin{array}{c} \\ \\ \end{array} \right\rangle$$
 + $\operatorname{Cl}_2 \xrightarrow{\operatorname{AlCl}_3} \left\langle \begin{array}{c} \\ \\ \end{array} \right\rangle$ Cl + HCl

(3)
$$\left\langle\begin{array}{c}Cl\end{array}\right\rangle$$
 + Cl_2 $\left\langle\begin{array}{c}Cl\end{array}\right\rangle$ $\left\langle\begin{array}{c}Cl\end{array}\right\rangle$ $\left\langle\begin{array}{c}Cl\end{array}\right\rangle$

(4)
$$\sim$$
 CH₂OH + HCl heat \sim CH₂Cl + H₂O

Ans. (2)

42. The major product of the following reaction is :

$$\begin{array}{c} \text{COOH} \\ + \text{NH}_3 & \xrightarrow{\text{strong heating}} \\ \text{COOH} \end{array}$$

Ans. (2)

43. For the chemical reaction $N_2(g) + 3H_2(g) \rightleftharpoons 2NH_3(g)$

the **correct** option is:

(1)
$$-\frac{1}{3}\frac{d[H_2]}{dt} = -\frac{1}{2}\frac{d[NH_3]}{dt}$$

$$(2) -\frac{d[N_2]}{dt} = 2\frac{d[NH_3]}{dt}$$

$$(3) -\frac{d[N_2]}{dt} = \frac{1}{2} \frac{d[NH_3]}{dt}$$

$$(4) 3 \frac{d[H_2]}{dt} = 2 \frac{d[NH_3]}{dt}$$

Ans. (3)

44. What is the **correct** electronic configuration of the central atom in $K_4[Fe(CN)_6]$ based on crystal field theory?

(1)
$$t_{2g}^4 e_g^2$$

(2)
$$t_{2g}^6 e_g^0$$

(3)
$$e^3t_2^3$$

(4)
$$e^4t_2^2$$

Ans. (2)

- **45.** The method used to remove temporary hardness of water is :
 - (1) Calgon's method
 - (2) Clark's method
 - (3) Ion-exchange method
 - (4) Synthetic resins method

Ans. (2)