NCERT Exemplar Class 11 Biology Chapter 3 Plant Kingdom

NCERT Exemplar Class 11 Biology Chapter 3 Plant Kingdom are part of NCERT Exemplar Class 11 Biology. Here we have given NCERT Exemplar Class 11 Biology Chapter 3 Plant Kingdom.

NCERT Exemplar Class 11 Biology Chapter 3 Plant Kingdom

Multiple Choice Questions

Q1. Cyanobacteria are classified under
(a) Protista (b) Plantae (c) Monera (d) Algae
Ans: (c) Cyanobacteria are classified under Kingdom Monera.
• Protista— unicellular eukaryotes
• Plantae, all members of Kingdom Plantae are eukaryotic chloroplast ‘chlorophyll containing organisms commonly called plants. These are autotrophic/holophytic.

Q2. Fusion of two motile gametes which are dissimilar in size is termed as
(a) Oogamy (b) Isogamy (c) Anisogamy (d) Zoogamy
Ans: (c) Fusion of two motile gametes which are dissimilar in size is termed as anisogamy.

Q3. Holdfast, stipe and frond constitute the plant body in case of
(a) Rhodophyceae (b) Chlorophyceae
(c) Phaeophyceae (d) All of the above
Ans: (c) The plant body of phaeophyceae is usually attached to the substratum by a holdfast, and has a stalk, the stipe and leaf like photosynthetic organ—the frond.

Q4. A plant shows thallus level of organization. It shows rhizoids and is haploid. It needs water to complete its life cycle because the male gametes are motile. It may belong to
(a) Pteridophytes (b) Gymnosperms
(c) Monocots (d) Bryophytes
Ans: (d) A plant shows thallus level of organization. It shows rhizoids and is haploid. It needs water to complete its life cycle because the male gametes are motile. It may belong to bryophytes.

Q5. A prothallus is ‘ ‘
(a) A structure in pteridophytes formed before the thallus develops
(b) A sporophytic free living structure formed in pteridophytes
(c) A gametophyte free living structure formed in pteridophytes
(d) A primitive structure formed after fertilization in pteridophytes
Ans. (c) In pteridophytes, meiosis or R/D occurs at the time of spore formation. The spores germinate to give rise to inconspicuous, small but multicellular, free-living, mostly photosynthetic thalloid gametophytes called prothallus. Prothallus tepresents the gametophytic phase in pteridophytes.

Q6. Plants of this group are diploid and well adapted to extreme conditions. They grow bearing sporophylls in compact structures called cones. The group in reference is
(a) Monocots (b) Dicots
(c) Pteridophytes (d) Gymnosperms
Ans: (d) Plants of this group are diploid and well adapted to extreme conditions. They grow bearing sporophylls in compact structures called cones. The group in reference is gymnosperms.

Q7. The embryo sac of an Angiosperm is made up of
(a) 8 cells .(b) 7 cells and 8 nuclei
(c) 8 nuclei (d) 7 cells and 7 nuclei
Ans: (b) The embryo sac of an Angiosperm is made up of 7 cells and 8 nuclei.

Q8. If the diploid number of a flowering plant is 36, what would be the chromosome number in its endosperm?
(a) 36 (b) 18 (c) 54 ‘ (d) 72
Ans: (c) Diploid number (2«) of a flowering plant is 36.
The chromosome number in its endosperm 3n = 54.

Q9. Protonema is
(a) Haploid and is found in mosses
(b) Diploid and is found in liverworts
(c) Diploid and is found in pteridophytes
(d) Haploid and is found in pteridophytes
Ans: (a) The predominant stage of the life cycle of a moss is the gametophyte which consists of two stages. The first stage is the protonema stage (juvenile stage) and the second stage is the leafy stage. Moss protonema resembles to multicellular green algae in structure. Moss plant develops from protonema.

Q10. The giant Redwood tree (Sequoia sempervirens) is a/an .
(a) Angiosperm (b) Free fern
(c) Pterdophyte (d) Gymnosperm
Ans: (d) One of the gymnosperms, the giant redwood tree Sequoia is one of the tallest tree species.

Very Short Answer Type Questions

Q1. Food is stored as Floridean starch in Rhodophyceae. Mannitol is the reserve food material of which group of algae?
Ans: Mannitol is the reserve food material of brown algae or phaeophyceae.

Q2. Give an example of plants with
a. Haplontic life cycle
b. Diplontic life cycle
c. Haplo-diplontic life cycle
Ans: a. Haplontic life cycle—Volvox, Spirogyra and some species of Chlamydomonas
b. Diplontic life cycle—AH seed-bearing plants, i.e. (gymnosperms and angiosperms)
c. Haplo-diplontic life cycle—Bryophyfes and Pteridophytes

Q3. The plant body in higher plants is well differentiated and well developed. Roots are the organs used for the purpose of absorption. What is the equivalent of roots in the less developed lower plants?
Ans: In lower plants like algae, holdfast is present and in bryophytes, rhizoids are present instead of roots.

Q4. Most algal genera show haplontic life style. Name an alga which is
a. Haplo-diplontic
b. Diplontic
Ans: a. Haplo-diplontic—Ectocarpus, Polysiphonia and Kelps b. Diplontic—Fucus

Q5. In Bryophytes male and female sex organs are called _______ and __________
Ans: In Bryophytes male sex organ is called antheridium and female sex organ is called archegonium.

Short Answer Type Questions

Q1. Why are bryophytes called the amphibians of the plant kingdom?
Ans: Bryophytes are also called amphibians of the plant kingdom because these . plants can live in soil but are dependent on water for sexual reproduction.

Q2. The male and female reproductive organs of several pteridophytes and gymnosperms are comparable to floral structures of angiosperms. Make an attempt to compare the various reproductive parts of pteridophytes and gymnosperms with reproductive structures of angiosperms

Ans.

Reproductive parts of pteridophytes and gymnosperms Reproductive structures of angiosperms
(0 Strobili/cone Flower
(ii) Microsporophyll Stamen
(iii) Megasporophyll Pistil/Carpel
(iv) Microsporangium Anther
(v) Megasporangium Ovule

 

Q3. Heterospory, i.e. formation of two types of spores—microspores and megaspores is a characteristic feature in the life cycle of a few members of pteridophytes and all spermatophytes. Do you think heterospory has some evolutionary significance in plant kingdom?
Ans: In majority of the pteridophytes all the spores are of similar kinds, such plants are called hom’osporous. Genera like Selaginella, Salvirtia, Marsilea and Azolla which produce two kinds of spores, macro (large) and micro (small) spores are known as heterosporous. The megaspores and microspores germinate and give rise to female and male gametophytes, respectively.
The female gametophytes in these plants are retained on the parent sporophytes for variable periods. The development of the zygotes into young embryos take place within the female gametophytes. This event is a precursor to the seed habit considered an important step in evolution.

Q4. How far does Selaginella one of the few living members of lycopodiales (pteridophytes) fall short of seed habit?
Ans: Selaginella produce two kinds of spores, macro (large) and micro (small) spores. The megaspores and microspores germinate and give rise to female and male gametophytes, respectively. But Selaginella falls short of seed habit due to lack of integument around the megasporangium.

Q5. Each plant or group of plants has some phylogenetic significance in relation to evolution: Cycas, one of the few living members of gymnosperms is called as the ‘relic of past’. Can you establish a phylogenetic relationship of Cycas with any other group of plants that justifies the above statement?
Ans: Cycas, one of the few living members of gymnosperms is called as the ‘relic of past’ because it shows many characteristics which are similar to pteridophytes, like, flagellated antherozoids, circinate ptyxis, megasporophyll is leaf like, presence of archegonia, etc.

Q6. The heterosporous pteridophytes show certain characteristics, which are precursor to the seed habit in gymnosperms. Explain.
Ans: In majority of the pteridophytes all the spores are of similar kinds, such plants are called homosporous. Genera like Selaginella, Salvinia, Marsilea and Azolla which produce two kinds of spores, macro (large) and micro (small) spores, are known as heterosporous. The megaspores and microspores germinate and give rise to female and male gametophytes, respectively.
The female gametophytes in these plants are retained on the parent sporophytes for variable periods. The development of the zygotes into young embryos take place within the female gametophytes. This event is a precursor to the seed habit considered an important step in evolution.

Q7. Comment on the life cycle and nature of a fern prothallus.
Ans: The diploid sporophyte is represented by a dominant, independent, photosynthetic, vascular plant body. It alternates with multicellular, saprophytic/autotrophic, independent but short-lived haploid gametophyte . called prothallus. Such a pattern is known as haplo-diplontic life cycle. All
pteridophytes exhibit this pattern.
These gametophytes require cool, damp, shady places to grow. Because of this specific restricted requirement and the need of water for fertilisation, the spread of living pteridophytes is limited and restricted to narrow geographical regions. The gametophytes (prothallus) bear male and female sex organs ‘ called antheridia and archegonia, respectively.
Water is required for transfer of antherozoids—the male gametes released from the antheridia, to the mouth of archegonium. Fusion of male gamete … with the egg present in the archegonium result in the fonnation of zygote.
• Zygote thereafter produces a multicellular well-differentiated sporophyte which is the dominant phase of the pteridophytes.

Q8. How arc the male and female gametophytes of pteridophytes and gymnosperms different from each other?
Ans: Male and female gametophytes of pteridophytes are free living while in gymnosperms male and female gametophyte do not have free-living * existence. They remain within the sporangia retained on sporophytes

Pteridophytes Gymnosperms
(0 Flagellated male gamete (a) Non-flagellated male gamete
(ii) Water is essential for fertilisation (b) Water is not essential
(iii) Pollen tubes are not formed (c) Pollen tubes are formed
(iv) Archegonia with neck canal cells (d) Neck canal cells are absent

Q9. In which plant will you look for mycorrhiza and corolloid roots? Also explain w’hat these terms mean.
Ans: Roots in some genera have fungal association in the form of mycorrhiza (Finns), while in some others (Cvms) small specialised roots called coralloid roots are associated with N2-fixing cyanobacteria

Long Answer Type Questions

Q1. Gametophyte is a dominant phase in the life cycle of a bryophyte. Explain.
Ans: The main plant body of the biyophyte is haploid. It produces gametes, hence is called a gametophyte. The sex organs in bryophytes are multicellular.
The male sex organ is called antheridium. They produce biflagellate antherozoids or biciliated sperms. The female sex organ called archegonium is flask-shaped and produces a single egg. The antherozoids are released into water where they come in contact with archegonium. An antherozoid fuses with the egg to produce the zygote. Zygote do not undergo reduction division immediately. They produce a multicellular body called a sporophyte.

Q2. With the help of a schematic diagram, describe the haplodiptontic life cycle pattern of a plant group.
Ans: In a sexually reproducing plant there is an alternation of generation between a haploid and a diploid phase of plant bodies. The haploid plant body is termed gametophyte while the diploid plant body is called sporophyte. The gametophyte produces gametes by mitosis while the haploid spores are produced by sporophyte following meiosis (reduction division). Two gamete fuse together to produce a zygote which develops into the diploid sporophyte.

NCERT Exemplar Class 11 Biology Chapter 3 Plant Kingdom Img 1

In a haplodiplontic life cycle pattern, such as in bryophyta or pteridophyta both the phases of life are multicellular. However, in bryophytes, the gametophytes are small, photosynthetic, independent and represent dominant phase. The partly or totally dependent sporophyte is physically attached to the gametophyte. The (n) spores dispersed by sporophyte germinate into individual gametophytic plants. However, in pteridophytes the 2n (diploid) phase is dominant, well organized, independent while the n phase though also free-living and independent is short lived and photosynthetic. In both of these groups of plants the mobile male gametes, antherozoid produced by sex organ antheridium, travel to archegonium (bearing an egg cell) via the medium of water. Egg cell is non-motile hence the reproduction is oogamous.

Q3. Lichen is usually cited as an example of‘symbiosis’ in plants where an algal and a fungal species live together for their mutual benefit. Which of the following will happen if algal and fungal partners are separated from each other?
a. Both will survive and grow normally and independent from each other.
b. Both will die.
c. Algal component will survive while the fungal component will die.
d. Fungal component will survive while algal partner will die.
Based on your answer how do you justify this association as symbiosis.
Ans: Lichen is usually cited as an example of symbiosis in biology where in a fungal and an algal species live together for mutual benefit. The algal component synthesizes the food through photosynthesis which is utilized by the fungal species for its survival. The fungal component in return provides shelter and waste products that are consumed by algal species.
Experiments though have shown that algal component can grow independently when separated from fungal species. But same is not true with the fungal component which dies when separated from algal component. This association is, therefore, a typical case of master-slave relationship where fungus (master) has trapped the algal components (slave) for its own survival while giving nothing in return to it. Some authors consider this association as controlled parasitism or helotism due to the fact that sometimes the fungus sends its haustoria into the algal cells to derive nourishment.

Q4. Explain why sexual reproduction in angiosperms is said to take place through double fertilization and triple fusion. Also draw a labelled diagram of embryo sac to explain the phenomena.
Ans: After entering one of the synergids, the pollen tube release the two male gametes into the cytoplasm of the synergid.

NCERT Exemplar Class 11 Biology Chapter 3 Plant Kingdom Img 2

Q5. Draw labelled diagrams of
a. Female and male thallus of a liverwort.
b. Gametophyte and sporophyte of Funaria.
c. Alternation of generation in Angiosperm.

Ans:  a. Female and male thallus of a liverwort.

NCERT Exemplar Class 11 Biology Chapter 3 Plant Kingdom Img 3

NCERT Exemplar Class 11 Biology Chapter 3 Plant Kingdom Img 4

NCERT Exemplar ProblemsMathsPhysicsChemistryBiology

We hope the NCERT Exemplar Class 11 Biology Chapter 3 Plant Kingdom help you. If you have any query regarding NCERT Exemplar Class 11 Biology Chapter 3 Plant Kingdom, drop a comment below and we will get back to you at the earliest.

NCERT Exemplar Class 11 Biology Chapter 11 Transport in Plants

NCERT Exemplar Class 11 Biology Chapter 11 Transport in Plants are part of NCERT Exemplar Class 11 Biology. Here we have given NCERT Exemplar Class 11 Biology Chapter 11 Transport in Plants.

NCERT Exemplar Class 11 Biology Chapter 11 Transport in Plants

Multiple Choice Questions

Q1. Which of the following statements does not apply to reverse osmosis?
(a) It is used for water purification.
(b) In this technique, pressure greater than osmotic pressure is applied to the system.
(c) It is a passive process.
(d) It is an active process.
Ans: (c) If pressure greater than the osmotic pressure is applied to the higher concentration, the direction of water flow through the membrane can be reverse. This is called reverse osmosis. Reverse osmosis occurs when water is moved across the membrane against the concentration gradient, from lower concentration to higher concentration. Reverse osmosis is an active process.

Q2. Which one of the following will not directly affect transpiration?
(a) Temperature
(b) Light
(c) Wind speed
(d) Chlorophyll content of leaves
Ans: (d) The chlorophyll content of leaves will not directly affect transpiration, while temperature, light and wind speed directly affect the transpiration.

Q3. The lower surface of leaf will have more number of stomata in a
(a) Dorsiventral leaf
(b) Isobilateral leaf
(c) Both (a) and (b)
(d) None of the above
Ans: (a) Usually, the lower surface of a dorsiventral (dicotyledonous) leaf has a greater number of stomata. On the upper surface, stomata may be even absent sometimes.

Q4. The form of sugar transported through phloem is
(a) Glucose (b) Fructose (c) Sucrose (d) Ribose
Ans: (c) Food, primarily sucrose, is transported by the vascular tissue phloem from a source to a sink.

Q5. The process of guttation takes place
(a) when the root pressure is high and the rate of transpiration is low
(b) when the root pressure is low and the rate of transpiration is high
(c) when the root pressure equals the rate of transpiration
(d) when the root pressure as well as rate of transpiration are high.
Ans: (a) The effect of root pressure is observable at night as well as early morning when evaporation is low. Excess water gets collected in the form of droplets around special openings of veins near the tip of grass blades and leaves of many herbaceous parts of plants such as Tropaeolum, Balsam and grasses. Such water loss in its liquid phase is known as guttation.

Q6. Which of the following is an example of imbibition?
(a) Uptake of water by root hair (b) Exchange of gases in stomata (c) Swelling of seed when put in soil (d) Opening of stomata
Ans: (c) Imbibition is a special type of diffusion. A classic example of imbibition is absorption of water by seeds and dry wood.

Q7. When a plant undergoes senescence, the nutrients may be
(a) accumulated
(b) bound to cell wall
(c) translocated
(d) None of the above
Ans: (c) Mineral ions are frequently remobilized (translocation), particularly from older senescing parts. Before the leaf fall in deciduous plants, minerals are translocated to other parts.

Q8. Water potential of pure water at standard temperature is equal to
(a) 10
(b) 20
(c) Zero
(d) None of these
Ans: (c) The water potential of pure water at standard temperature is equal to zero.

Q9. Choose the correct option. Mycorrhiza is a symbiotic association of fungus with root system which helps in A. Absorption of water B. Mineral nutrition
C. Translocation D. Gaseous exchange
(a) Only A
(b) Only B –
(c) Both A and B
(d) Both B and C
Ans: (c) Mycorrhiza is a symbiotic association of fungus with root system which helps in absorption of water and mineral nutrition.

Q10. Based on the figure given below, which of the following statements is not correct?
NCERT Exemplar Class 11 Biology Chapter 11 Transport in Plants Img 1
(a) Movement of solvent molecules will take place from chamber AtoB
(b) Movement of solute will take place from A to B
(c) Presence of a semipermeable is a prerequisite for this process to occur
(d) The direction and rate of osmosis depends on both the pressure gradient and concentration gradient.
Ans: (b) The movement of solute will take place from B to A

Q11. Match the following and choose the correct option.

A. Leaves (i) Anti-transpirant
B. Seed (ii) Transpiration
C. Roots (iii) Negative osmotic potential
D. Aspirin (iv) Imbibition ‘
E. Plasmolyzed cell (v) Absorption

Options:
(a) A—(ii), B—(iv), C—(v), D—(i), E—(iii)
(b) A—(iii), B—(ii), C—(iv), D—(i), E—(v)
(c) A—(i), B—(ii), C—(iii), D—(iv), E—(v)
(d) A—(v), B—(iv), C—(iii), D—(ii), E—(i)
Ans: (a)

A. Leaves (ii) Transpiration
B. Seed (iv) Imbibition
e. Roots (v) Absorption
D. Aspirin (i) Anti-transpirant
E. Plasmolyzed cell (ii) Negative osmotic potential

 

Q12. Mark the mismatched pair.
(a) Amyloplast—Store protein granule
(b) Elaioplast—Store oils or fats
(c) Chloroplasts—Contain chlorophyll pigments
(d) Chromoplasts—Contain coloured pigments other than chlorophyll
Ans: (a) Aleuroplasts—Store proteins
Amyloplast—Store carbohydrate (starch)
Very Short Answer Type Questions .
Q1. Smaller, lipid soluble molecules diffuse faster through cell membrane, but the movement of hydrophilic substances are facilitated by certain transporters which are chemically ________.
Ans: Protein

Q2. In a passive transport across a membrane, when two protein molecules move in opposite direction and independent of each other, it is called as ________
Ans: Antiport

Q3. Osmosis is a special kind of’diffusion, in which water diffuses across the cell membrane. The rate and direction of osmosis depends upon both ________
Ans: Pressure and concentration gradient

Q4. A flowering plant is planted in an earthen pot and irrigated. Urea is added to make the plant grow faster, but after some time the plant dies. This may be due to ________.
Ans: Exosmosis

Q5. Absorption of water from soil by dry seeds increases the ________ thus helping seedlings to come out of soil.
Ans: Pressure

Q6. Water moves up against gravity and even for a tree of 20 m height, the tip receives water within two hours. The most important physiological phenomenon which is responsible for the upward movement of water is _________
Ans: Transpiration pull

Q7. The plant cell cytoplasm is surrounded by both cell wall and cell membrane. The specificity of transport of substances are mostly across the cell membrane, because _________ .
Ans: The cell wall is freely permeable to water and substances in solutions but membrane is selectively permeable.

Q8. The C4 plants are twice as efficient as C3 plants in terms of fixing C02 but lose only _________ as much water as C3 plants for the same amount of C02 fixed.
Ans: Half

Q9. Movement of substances in xylem is unidirectional while in phloem it is bidirectional. Explain.
Ans: The direction of movement in the phloem can be upwards or downwards, i.e. bi-directional. This contrasts with that of the xylem where the movement is always unidirectional, i.e. upwards. Hence, unlike one-way flow of water in transpiration, food in phloem sap can be transported in any required direction, as it is a source of sugar and works as a sink to use, store or remove the sugar

Q10. Identify the process occurring in I, II and III.
NCERT Exemplar Class 11 Biology Chapter 11 Transport in Plants Img 2
Ans:
I—Uniport facilitated diffusion
II— Antiport facilitated diffusion
III— Symport facilitated diffusion

Q11. Given below is a table. Fill in the gaps.

Property Simple

diffusion

Facilitated

transport

Active

transport

i. Highly selective Yes
ii. Uphill transport Yes
iii. Requires ATP

Ans:

Property Simple

diffusion

Facilitated

transport

Active

transport

i. Highly selective No Yes Yes
ii. Uphill transport No No , Yes
iii. Requires ATP No No Yes

Q12. Define water potential and solute potential.
Ans: Water potential is considered as the potential energy of water. It is also taken as a measure of the difference between the potential energy in a given sample of wafer and pure water.
If a solute is dissolved in pure water, the solution is considered having fewer free water and hence the concentration of water decreases. Thus, all solutions have lower water potential than pure water. The magnitude of lowering in water potential due to dissolution of solute is called solute potential.

NCERT Exemplar ProblemsMathsPhysicsChemistryBiology

We hope the NCERT Exemplar Class 11 Biology Chapter 11 Transport in Plants help you. If you have any query regarding NCERT Exemplar Class 11 Biology Chapter 11 Transport in Plants, drop a comment below and we will get back to you at the earliest.

NCERT Solutions For Class 11 Biology Biological Classification

NCERT Solutions For Class 11 Biology Biological Classification

Topics and Subtopics in NCERT Solutions for Class 11 Biology Chapter 2 Biological Classification:

Section Name Topic Name
2 Biological Classification
2.1 Kingdom Monera
2.2 Kingdom Protista
2.3 Kingdom Fungi
2.4 Kingdom Plantae
2.5 Kingdom Animalia
2.6 Viruses, Viroids and Lichens
2.7 Summary

NCERT Solutions Class 11 BiologyBiology Sample Papers

NCRT TEXT BOOK QUESTIONS SOLVED

1.Discuss how classification systems have undergone several changes over a period of time?
Soln. Biological classification is the scientific procedure of arranging organisms in a hierarchical series of groups and sub-groups on the basis of their similarities and dissimilarities. Scientists have proposed different systems of classification which have undergone several changes from time to time.
Earlier Aristotle proposed artificial system of classification, which divided animals and plants on basis of habitat. E.g., Aquatic (fish, whale), terrestrial (e.g., reptiles, cattle) and aerial (e.g., bat, birds). Then, natural system of classification was based on morphology^ anatomy, physiology, reproduction, ontogeny, cytochemistry, etc. After natural system, organisms were classified on basis of evolutionary relationships called phyloge¬netic system. It is based on cytotaxonomy, chemotaxOnomy, numerical taxonomy and cladistic taxonomy.

2.State two economically important uses of:
(a) heterotrophic bacteria
(b) archaebacteria
Soln. (a) Heterotrophic bacteria: They include saprotrophic, symbiotic and parasitic bacteria. They act as natural scavengers as they dispose off the dead bodies, organic wastes, release raw materials for reutilisation. They also help in sewage disposal, manure production etc. Symbiotic bacteria help in nitrogen fixation. Some bacteria arq employed in the production of a number of industrial products like lactic
acid, curd, cheese, butter, vinegar etc. Some bacteria are used in preparation of serum, vaccines, vitamins, enzymes, antibiotics etc. e.g., Pseudomonas, Xanthomonas, etc.
(b) Archaebacteria : Archaebacteria are employed in the production of gobar gas from dung and sewage and in ruminants, they cause fermentation of cellulose.

More Resources for CBSE Class 11

3.What is the nature of cell-wall in diatoms?
Soln. The cell walls of diatoms are called frustules. The cell wall is chiefly composed of cellulose impregnated with glass-like silica. It is composed of two overlapping halves (or theca) that fit together like two parts of a soap box or petri dish. The upper half (lid) is called epitheca and the lower half (case) is called hypotheca. The outer covering possesses very fine markings, pits, pores and ridges. The siliceous frustules of diatoms do not decay easily. They pile up at the bottom of water reservoirs and form big heaps called diatomite or diatomaceous earth. It may extend for several hundred metres in certain areas from where the same can be mined.

4.Find out what do the terms ‘algal bloom’ and ‘red tides’ signify.
Soln.The rapid increase in populations of algae and other phytoplanktons, in particular cyanobacteria, in water bodies rich in organic matter is called algal bloom. The density of the organisms may be such that it may prevent light from passing to lower depths in the water body. Algal blooms are caused by an increase in levels of nitrate, a mineral ion essential for algal and bacterial growth.
The source of increased nitrate may be from agricultural fertilizers, which are leached – into water systems from the land, or sewage effluent.
Red tides are caused by a sudden, often toxic proliferation of marine phytoplankton, notably dinoflagellates, that colour the sea red, brown, or yellowish due to the high concentration of the photosynthetic accessory pigments. Some dinoflagellates, such as Gonyaulax, produce potent toxins, which may kill fish and invertebrates outright or accumulate in the food chain, posing a hazard to humans eating shellfish and other seafood. These phytoplanktonic blooms may be related to nutrient-rich inputs from the land, or upwelling oceanic waters, and are initiated by the activation of cyst-like forms lying on the sea bed.

5.How are viroids different from viruses?
Soln. Viroids are the smallest known agent of infectious diseases that contain small single-stranded RNA molecule. They lack capsid and have no proteins associated with them. Viroids infect only plants. Whereas, viruses have genetic material surrounded by a protective coat of protein or lipoprotein. The genetic material of viruses are of 4 types – double-stranded DNA, double-stranded RNA, single-stranded DNA, single-stranded RNA. They infect both plants and animals.

6.Describe briefly the four major groups of protozoa.
Soln. All protozoans are heterotrophs and live as predators or. parasites. They are be-lieved to be primitive relatives of animals. They are classified into four groups on the basis of locomotory organelles.
(i) Amoeboid protozoans : These organisms live in fresh water, sea water or moist soil. They move and capture their prey by developing pseudopodia (false feet) as in Amoeba. Some of them such as Entamoeba are parasites.
(ii)Flagellated protozoans : The members of this group are either free-living or parasitic. They have flagella for locomotion. The parasitic forms cause diseases such as sleeping sickness e.g., Trypanosoma.
(iii)Ciliated protozoans : These are aquatic, actively moving organisms because of the presence of thousands of cilia. They have
a cavity (gullet) that opens to the outside ‘
of the cell surface. The coordinated movement of rows of cilia causes the water laden with food to be steered into the gullet e.g., Paramecium. ~
(iv)Sporozoans: This includes diverse parasitic organisms that have an infectious spore¬like stage in their life cycle. Locomotory organs are absent. The most notorious N . is Plasmodium (malarial parasite) which
causes malaria which has a staggering effect on human population.

7.Plants are autotrophic. Can you think of some
plants that are partially heterotrophic?
Soln. Some insectivorous plants like Drosera,
Nepenthes, Utricularia are partially heterotrophic
plant. These plants are deficient in nitrogen
content but are otherwise autotrophic. They, trap various insects to obtain nitrogen from them. Rest, the food i.e., carbohydrate is
manufactured by themselves.

8.What do the terms phycobiont and mycobiont signify?
Soln. A lichen is structurally organised
entity consisting of the permanent association
of a fungus and an alga. The fungal component of a lichen is called mycobiont and the algal component is called phycobiont. Both mycobiont and phycobiont are associated
in symbiotic union in which the fungus is predominant and alga is subordinate partner. – ; Fungus provides the structural covering that protects alga from unfavourable conditions,
i.e., drought, heat, etc. It also traps moisture from the atmosphere and anchors the
lichen to a rock, tree bark, leaves and other similar supports. The alga prepares organic food by the process of photosynthesis from carbon dioxide. If the algal component is cyanobacteria (blue-green alga), they fix atmospheric nitrogen in addition to preparation of food.

9.Organise a discussion in your class on the topic – ‘Are viruses living or non-living’?
Soln. Viruses are regarded as intermediate between non-living entities and living
organisms. It is very difficult to ascertain whether they are living or non-living. Some . characters of viruses suggest their non-living nature whereas many other characters suggest their living nature.
They resemble non-living objects in –
(i) Lacking protoplast.
(ii)Ability to get crystallised.
(iii)Inability to live independent of living cell.
(iv)High specific gravity which is found
.only in non-living objects.
(v)Absence of respiration.
(vi)Absence of energy storing system.
(vii)Absence of growth and division. Instead different parts are synthesized separately.
Viruses resemble living beings in –
(i)Being formed of organic macromolecules which occur only in living beings.
(ii)Presence of genetic material.
(iii)Ability to multiply or reproduce although only inside living cell.
(iv)Occurrence of mutations.
(v) Occurrence of enzyme transcriptase in most viruses.
(vi)Some viruses like Pox virus contains vitamins like riboflavin and biotin.
(vii)Infectivity and host specificity.
(viii)Viruses are ‘killed’ by autoclaving and ultraviolet rays.
(ix)They breed true to their type. Even variations are inheritable.
(x) They take over biosynthetic machinery of the host cell and produce chemicals required for their multiplication.
(xi)Viruses are responsible for a number of infectious’ diseases like common cold, epidemic influenza, chicken pox.

10.What are the characteristic features of Euglenoids?
Soln. The euglenoid flagellates are the most interesting organisms having a mixture of animal and plant characteristics. The characteristic features are:
(i) They are unicellular flagellates.
(ii)These protists lack a definite cellulose cell wall. Instead the cells are covered by
a thin membrane known as pellicle. The pellicle is composed of protein, lipid and carbohydrates.
(iii)One or two flagella which help these protists in active swimming are present. If two flagella are present, then one is long and other is short. They are tinsel – shaped i.e., with two longitudinal rows of fine hairs. Each flagellum has its own basal granule. The two flagella join with each other at a swelling, called paraflagellar body and finally only one long flagellum emerges out through the cytostome.
(iv)Cell at the anterior end possesses an eccentric mouth or cytostome which leads into a flask-shaped cavity viz. gullet or cytopharynx. Gullet opens into a large basal reservoir.
(v) At one end of the reservoir, the cytoplasm contains an orange red stigma (eye spot). The eye spot is a curved plate with orange-red granules and contains red pigment astaxanthin. Both paraflagellar body and eye spot act as photoreceptors.
(vi)Just below the reservoir is found a contractile vacuole having many feeding canals. The contractile vacuole takes part in osmoregulation. It expands and pumps its fluid contents in the reservoir.
(vii)The mode of nutrition in euglenoids is holophytic or photoautotrophic. Some euglenoids show mixotrophic nutrition (both holophytic as well as saprobic mode).
(viii)Cytoplasm is differentiated into ectoplasm and endoplasm. Nucleus is large and occurs roughly in middle. The envelope and nucleolus persist during cell division.
(ix)Each chloroplast is composed of a granular matrix traversed by 10-45 dense bands and is covered by 3-membraned envelope. They contain the photo¬synthetic pigments-chlorophyll – n, b. They store carbohydrates as paramylon bodies, scattered throughout the cytoplasm.
(x) Asexual reproduction occurs by longitudinal binary fission. The flagellum is duplicated before cell division.
(xi)Under unfavourable condition the euglenoids form cysts to perennate the dry period.
(xii)Sexual reproduction is not observed.

11.Give a brief account of viruses with respect to their structure and nature of genetic material. Also name four common viral diseases.
Soln. Virus (L. poisonous fluid) is a group of ultramicroscopic, non-cellular, highly infectious agents that multiply only intracellularly- inside the living host cells without involving growth and division. Outside the host cells, they are inert particles. They are nucleoproteins having one or more nucleic acid molecule, either DNA or RNA, encased in a protective coat of protein or lipoprotein. A virus consist of two parts – nucleoid (genome) and capsid. An envelope and few enzymes are present in some cases,
(i) Nucleoid : The nucleic acid present in the virus is called nucleoid and it represents viral chromosome. It is made up of a single molecule of nucleic acid. It may be linear
or circular and nucleic acid can be DNA or RNA. It is the infective part of virus which utilizes the metabolic machinery of the host cell for synthesis and assembly of viral components.
(ii)Capsid : It is a protein covering around genetic material. Capsid have protein subunits called capsomeres. Capsid protects nucleoid from damage from physical and chemical agents. ,
(iii)Envelope : It is the outer loose covering present in certain viruses like animal viruses (e.g., HIV) but rarely present in plant and bacterial viruses and made of protein of viral origin and, lipid and carbohydrate of host. Outgrowths called spikes may be present. Envelope proteins have subunits called peplomers. A virus without envelope is naked virus.
(iv)Enzymes : Rarely, lysozymes are found in bacteriophages. Reverse transcriptase enzyme (catalyses RNA to DNA synthesis) is found in some RNA viruses like HIV. Some common viral diseases are – influenza, polio, measles, chickenpox, hepatitis, AIDS, bird flu, SARS (Severe Acute Respiratory Syndrome) etc.

12.Give a comparative account of the classes of Kingdom Fungi under the following:
(i) mode of nutrition (ii) mode of reproduction
Soln.
NCERT Solutions For Class 11 Biology Biological Classification Q12
NCERT Solutions For Class 11 Biology Biological Classification Q12.1

NCERT Solutions For Class 11 Biology Animal Kingdom

NCERT Solutions For Class 11 Biology Animal Kingdom

Topics and Subtopics in NCERT Solutions for Class 11 Biology Chapter 4 Animal Kingdom:

Animal Kingdom Phylum List

Section Name Topic Name
4 Animal Kingdom
4.1 Basis of Classification
4.2 Classification of Animals
4.3 Summary

NCERT Solutions Class 11 BiologyBiology Sample Papers

NCRT TEXTBOOK QUESTIONS SOLVED

1.What are the difficulties that you would face in classification of animals, if common fundamental features are not taken into account?
soln. The common fundamental features used for classifying animals include body symmetry, arrangement of cells, nature of coelom, level of organisation. Animal classification would be very confusing if fundamental features are not considered.
(i)Animals having different levels of organisation would have been placed in same group. E.g., Sponges and Cnidarians having cellular and tissue level of organisation respectively.
(ii)Animals showing varied types of germinal layers would have been placed together, as diploblastic cnidarians and triploblastic platyhelminthes.
(iii)Animals having different body symmetry would have been placed together, as coelenterates with radial symmetry and platyhelminthes with bilateral symmetry.
(iv)There would have been no classification of animals based on with or without body cavity..
(v)Placing of oviparous and viviparous animals together.

2.If you are given a specimen, what are the steps that you would follow to classify it?
soln. Various steps considered to classify a specimen are:
(i)Mode of nutrition – It can be autotrophic, holozoic, saprophytic or parasitic.
(ii)Complexity of body structure – Whether the specimen is unicellular or multicellular.
(iii)Presence or absence of membrane bound organelles.
(iv)Body symmetry, i.e., the plane by which organism can be divided into two equal halves.
(v)Presence or absence of coelom, it can be acoelomates, pseudocoelomates, eucoelo- mates.
(vi)Phylogenetic relationship.

More Resources for CBSE Class 11

3.How useful is the study of the nature of body cavity and coelom in the classification of animals?
soln. Organisms can be classified according to presence or absence of the coelom. The body cavity, which is lined by mesoderm is called coelom. Animals possessing coelom are called coelomates, e.g., annelids, molluscs, arthropods, echinoderms, hemichordates and chordates. In some animals, the body cavity is not lined by mesoderm, instead, the mesoderm is present as scattered pouches in between the ectoderm and endoderm. Such a body cavity is called pseudocoelom and the animals possessing them are called pseudocoelomates, e.g., aschelminthes. In pseudocoelomates, body cavity is derived from blastocoel of the embryo. The animals in which the body cavity is absent are called acoelomates, e.g., platyhelminthes.

4.Distinguish between intracellular and extra-cellular digestion.
soln. Differences between intracellular and extracellular digestion are:
NCERT Solutions For Class 11 Biology Animal Kingdom Q4

NCERT Solutions For Class 11 Biology Animal Kingdom Q4.1

5.What is the difference between direct and indirect development?
soln. Differences between direct development and indirect development are :
NCERT Solutions For Class 11 Biology Animal Kingdom Q5

6.What are the peculiar features that you find in parasitic platyhelminthes?
soln.Following are the peculiar features of parasitic platyhelminthes:
(i) The thick tegument (body covering) resistant to the host’s digestive enzymes and anti-toxins.
(ii)Adhesive organs like suckers in flukes and the hooks and suckers in tapeworms for a firm grip on or in the host’s body.
(iii)Loss of locomotory organs.
(iv)Digestive organs are absent in tapeworms because digested and semidigested food of the host is directly absorbed’ through the body surface.
(v) Reproductive system is best developed in parasitic flatworms.
(vi)Parasitic flatworms, such as liver fluke and tapeworms perform anaerobic respiration.
(vii)They possess a considerable osmotic adaptability, as they can successfully live in different media.

7.What are the reasons that you can think of for the arthropods to constitute the largest group of the animal kingdom?
soln. Arthropods are most successful animals and constitute the largest group of the animal kingdom. They have conquered land, sea and air and make up over three fourth of currently known living and fossil organisms. They range in distribution from deep sea to mountain peaks. Thick, tough, non-living chitinous cuticle forms the exoskeleton which protects the organism from predators, help to withstand temperature upto 100°C or more and prevents water loss. They have ability to reproduce very fast and less time is needed for young ones to hatch from their eggs. Due to metamorphosis, there is less competition among larval and adult forms for food. Cockroaches can even survive nuclear radiations and poisoned earth. All these factors made arthropods the largest phylum among animals.
8.Water vascular system is the characteristic of which group among the following ?
(a) Porifera
(b) Ctenophora
(c) Echinodermata
(d) Chordata
soln. (c) Echinodermata

9.”All vertebrates are chordates but all chordates are not vertebrates”. Justify the statement.
soln. Chordates are the animals that possess notochord (a stiff, supporting rod like structure present on the dorsal side) at some stage of their lives. Phylum Chordata is divided into three Subphyla: Urochordata or tunicata, Cephalochordata and Vertebrata. Subphyla Urochordata and Cephalochordata are often referred to as protochordates and are exclusively marine. In urochordata, notochord is present only in tail of larva and disappears in adults, while in cephalochordata, it extends from head to tail region and persists throughout the life.
The members of Subphylum Vertebrata a possess notochord during the embryonic period and is replaced by a cartilaginous or bony vertebral column in the adult. Thus all vertebrates are chordates but all chordates are not vertebrates.

10.How important is the presence of air bladder in
Pisces?
soln. Bony fishes have a sac-like outgrowth, the swim bladder also called air bladder, that arises as an outgrowth from the dorsal wall of oesophagus. It is hydrostatic in function. It regulates buoyancy and helps them to swim up and down, thus preventing them from sinking. In some species air bladder also helps in respiration. It also serves as resonating chamber to produce or receive sound.

11.What are the modifications that are observed
in birds that help them fly?
soln. Birds have adapted to aerial mode of life through the following modifications:
(i) Body is streamlined and spindle shaped which minimise resistance to the wind.
(ii)Body is covered with feathers. It reduces the friction, prevent loss of heat and help to maintain constant temperature.
(iii)Forelimbs are modified into wings, which help during flight.
(iv)Flight muscles are greatly developed
(v) Most of the bones are pneumatic, hollow and filled vvith air which makes the body lighter and helps in flight.
(vi)Birds are warm-blooded. They maintain a high body temperature (40° – 46°C). This is necessary for flight.
(vii)Heart is four-chambered and functions efficiently with double circulation.
(viiiJAir sacs are present which act as reservoir of air and helps in temperature regulation
(ix)Urinary bladder is absent (except in Rhea) and only one ovary is present which reduces the weight, which is essential for flight.

12. Could the number of eggs or young ones produced by an oviparous and viviparous mother be equal? Why?
soln. No, the number of eggs or young ones produced by an oviparous and viviparous mother respectively cannot be equal. Oviparous mother lays large number of eggs, as the eggs are laid outside the body, so they are not protected from predators and harsh environmental conditions, and therefore destroyed. However in viviparous mother, eggs are not laid outside, but the embryos develop inside the mother and thus are protected from the outside harsh environment, thus, the number of eggs produced are less. Therefore, the number of eggs or young ones produced by an oviparous and viviparous mother respectively cannot be equal.

13.Segmentation in the body is first observed in which of the following?
(a) Platyhelminthes
(b) Aschelminthes
(c) Annelida
(d) Arthropoda
soln. (c) Annelida

14.Match the following:
(a) Operculum (i) Ctenophora
(b) Parapodia (ii)Mollusca
(c) Scales (iii)Porifera
(d) Comb plates (iv)Reptilia
(e) Radula (v) Annelida
(f) Hair (vi)Cyclostomata and
Chondrichthyes
(g) Choanocytes (vii)Mammalia
(h) Gill slits (viii Osteichthyes
soln.(a) – (viii), (b) – (v), (c) – (iv), (d) – (i),
(e) – (ii), (f) – (vii), (g) – (iii), (h) – (vi).

15. Prepare a list of some animals that are found parasitic on human beings.
soln.List of some animals that are found parasitic on human beings :
NCERT Solutions For Class 11 Biology Animal Kingdom Q15

NCERT Solutions For Class 11 Biology Morphology of Flowering Plants

NCERT Solutions For Class 11 Biology Morphology of Flowering Plants

Topics and Subtopics in NCERT Solutions for Class 11 Biology Chapter 5 Morphology of Flowering Plants:

Section Name Topic Name
5 Morphology of Flowering Plants
5.1 The Root
5.2 The Stem
5.3 The Leaf
5.4 The Inflorescence
5.5 The Flower
5.6 The Fruit
5.7 The Seed
5.8 Semi-technical Description of a Typical Flowering Plant
5.9 Description of Some Important Families
5.10 Summary

NCRT TEXTBOOK QUESTIONS SOLVED

1.What is meant by modification of root? What type of modification of root is found in the:
(a) Banyan tree
(b) Turnip
(c) Mangrove trees
Soln.Roots of some plants change their shape and structure and become modified to perform certain functions other than absorption and conduction of water and minerals. It is called modification of roots. Roots are modified for support, storage of food and respiration, etc.
(a) Root modification in banyan tree : In banyan tree, the root modifies to form prop roots. Prop roots arise from branches and enter the soil. Thus, they provide mechanical support to densely branched, huge trees.
(b) Root modification in turnip : The
modification of root found in turnip is napiform for food storage. The upper portion of these fleshy roots is inflated or swollen which tapers towards the lower end.
(c) Root modification in mangrove trees : In mangrove plants, i.e., plants growing in saline marshes, the branches of tap root come out of the ground and grow vertically upwards showing negative geotropism. These roots are called pneumatophores. They help to get oxygen for respiration.

2.Justify the following statements on the basis of external features:
(i) Underground parts of a plant are not always roots.
(ii) Flower is a modified shoot.
Soln. (i) Underground parts of plant are not always roots because sometimes the stem also becomes underground and gets modified into various forms to perform different functions of storage, vegetative propagation, perennation, etc. Underground modifications of stems are tuber, rhizome, corm and bulb. The underground stems can be distinguished from roots externally by the presence of nodes and internodes, axillary buds, scale leaves etc. and by absence of root cap and root hairs.
(ii) Flower is the reproductive part of the angiospermic plant and it is defined as the modified shoot because (a) like shoot, flower develops from an axillary or rarely terminal bud. (b) flowers may get modified into fleshy buds or bulbils, (c) A transition from foliage leaves to floral leaves is found in Paeonia. (d) Nymphaea shows transition from sepals to petals and petals to stamens, (e) In Passiflora and Cleome long intemodes occur below gynoecium and stamens.

More Resources for CBSE Class 11

3.How is a pinnately compound leaf different from a palmately compound leaf?
Soln.The compound leaves may be of two types, pinnately compound leaf and palmately compound leaf. In pinnately compound leaf, a number of leaflets are present on a common axis, the rachis, which represents the midrib of the leaf as in neem. Pinnately compound leaf may be of different types as unipinnate, bipinna te, tripinna te and decompound. In palmately compound leaf, the leaflets are attached at a common point, i.e., at the tip of petiole, as in silk cotton. Palmately compound leaf may be of different types as unifoliate, bifoliate, trifoliate, quadrifoliate and multifoliate.

4.Explain with suitable examples the different types of phyllotaxy.
Soln.Phyllotaxy is the pattern of arrangement of leaves on the stem or branch. It is usually of three types – alternate, opposite and whorled. In alternate type of phyllotaxy, a single leaf arises at each node in alternate manner, as in china rose, mustard and sunflower plants. In opposite type, a pair of leaves arises at each node and lie opposite to each other as in Calotropis and guava plants.
If more than two leaves arise at a node and form a whorl it is called whorled phyllotaxy as in Alstonia.

5.Define the following terms:
(a) aestivation (b) placentation
(c) actinomorphic (d) zygomorphic
(e) superior ovary (f) perigynous flower (g) epipetalous stamen.
Soln. (a) Aestivation : The mode of arrange¬ment of accessory floral organs (sepals and petals) in relation to one another in floral bud is known as aestivation. The main type of aestivation are valvate, twisted, imbricate, and vexillary.
(b) Placentation : The arrangement of ovules within the ovary is known as placentation. The placentation are of different types namely, marginal, axile, parietal, basal, and free central.
(c) Actinomorphic : When flower can be divided into equal radial halves in any radial plane passing through the centre, it is said to be actinomorphic, e.g., mustard, Datura etc.
(d) Zygomorphic : When a flower can be divided into two similar halves only in one particular vertical plane, it is said to be zygomorphic, e.g., pea, gulmohar, bean, Cassia.
(e) Superior ovary : In hypogynous flower, the gynoecium occupies the highest position while the other parts are situated below it. The ovary in such flowers is said to be superior, e.g., mustard, brinjal.
(f) Perigynous flower: If gynoecium is situated in the centre and other parts of the flower are
located on the rim of the thalamus almost at the same level, it is called perigynous. Here ovary is half superior, e.g., peach, plum.
(g) Epipetalous stamen : When stamens are attached to the petals, they are called epipetalous stamens e.g., brinjal.

6.Differentiate between
(a) Racemose and cymose inflorescence
(b) Fibrous root and adventitious root
(c) Apocarpous and syncarpous ovary
Soln.
(a) Differences between racemose and cymose inflorescence are as follows:
NCERT Solutions For Class 11 Biology Morphology of Flowering Plants Q6
(b) Differences between fibrous and adventitious roots are as follows :
NCERT Solutions For Class 11 Biology Morphology of Flowering Plants Q6.1

NCERT Solutions For Class 11 Biology Morphology of Flowering Plants Q6.2
(c) Differences between apocarpous and syncarpous ovary are as follows :
NCERT Solutions For Class 11 Biology Morphology of Flowering Plants Q6.3

7.Draw the labelled diagram of the following:
(i) Gram seed (ii) V. S. of maize seed.
Soln.
(i) Gram seed.
NCERT Solutions For Class 11 Biology Morphology of Flowering Plants Q7
(ii) V.S. of maize seed.
NCERT Solutions For Class 11 Biology Morphology of Flowering Plants Q7.1

8.Describe modifications of stem with suitable examples.
Soln. Stems are modified to perform different functions. Underground stems of some plants are modified to store food in them. They also act as organs of perennation to tide over conditions unfavourable for growth. Different modifications of stem are :
(i) Underground modifications
(ii)Sub-aerial modifications
(iii)Aerial modifications
(i)Underground modifications of stem are discussed as follows:
(a)Tuber: It is the branch of main stem which accumulates or stores food in it and swells up, e.g., Solarium tuberosum (potato).
(b) Rhizome: It is a branched, prostrate horizontally growing stem having nodes and internodes. On the nodes sessile scale leaves are formed, e.g., Carina, Zingiber officinale (ginger), Curcuma domestica (turmeric) etc.
(c) Corm: This is a spherical,
branched, vertically growing thick underground stem with more diameter than length, e.g., Crocus sativus (saffron), Gladiolus, Colocasia esculenta (arvi) etc.
(d) Bulb: In bulb the stem is highly reduced and can be seen only as a disc-like structure bearing numerous fleshy scaly leaves, e.g., Allium cepa (onion), Allium sativum (garlic) etc.
(ii) Subaerial modifications : Subaerial part of stem grows horizontally on the ground while some part remains underground. Vegetative propagation takes place by means of these. They may be of following kinds.
(a) Runner: It grows prostrate on the surface of soil. It develops at the base of erect shoot called crown. A number of runners arise from one erect shoot which spread in different directions. Each runner has one or more nodes which bear scale leaves and axillary buds, e.g., Cynodon (doob grass).
(b) Stolon: The nodes of horizontally growing underground stem give rise to branches which come out of the soil, e.g., Fragaria (strawberry).
(c) Sucker: Suckers are formed from the node of underground stem. Sucker comes up obliquely in the form of leafy shoot, e.g., Mentha (mint).
(d) Offset: Stem consists of thick and short intemodes. The branches are formed from the main stem and upper portion of each branch bears a group of leaves while the lower portion bears the roots. Each branch is capable of growing as an independent plant after separating from the parent plant, e.g., Eichhornia (water hyacinth), Pistia, etc.
(iii)Aerial modifications : The aerial portion of stem is modified to perform different functions, e.g., climbing, protection, food manufacturing, etc. It may show following types of modifications:
(a) Twinners : The stem is long, flexible and sensitive which can coil around an upright support like a rope, e.g., Ipomoea, Convolvulus.
(b) Climbers : The stem is weak and flexible but is unable to coil around an upright support by itself. It requires the help of clasping or clinging structures. Accordingly, climbers are of four types : root climbers, e.g., Betel; tendril climber, e.g., Passiflora; scramblers, e.g., Bougainvillea and lianas, e.g., Bauhinia.
(c) Phylloclade: The stem performs the function of photosynthesis. The stem modifies into green fleshy leaf-like
structure having distinct nodes and intemodes. Leaves of such plants are reduced into spines in order to prevent loss of water, e.g., Opantia (prickly pear), Euphorbia.
(d) Cladode: It is similar to phylloclade with only one internode, e.g., Asparagus.
(e) Thorn: Stem is modified into stiff, pointed unbranched or branched structures which have lost their growing point and become hard, called as thorns, e.g., Bougainvillea,Pomegranate, Citrus, etc. They perform defensive function.
(f) Tendrils : These are thread like sensitive structures which can coil around a support and help the plant
in climbing, e.g., Cucurbita.
(g) Bulbils: In some plants vegetative buds or floral buds modify into a swollen structure called bulbil. It separates from the parent plant and on approach of favourable condition gives rise to a new plant, i.e., it is an organ of vegetative reproduction, e.g., Agave, Oxalis.

9.Take one flower each of the families Fabaceae and Solanaceae and write their semi-technical description. Also draw their floral diagram after studying them.
Soln.Family Fabaceae (e.g., Pisum sativum) Systematic position:
Class – Dicotyledoneae
Subclass- Polypetalae
Series – Calyciflorae
Order – Rosales
Family – Fabaceae
Vegetative characters:
Habit: herb. Root: tap, branched, with root nodules.
Stem: herbaceous, climbing.
Leaves : pinnately compound, leaf base pulvinate, stipulate, venation reticulate.
Floral characters:
Inflorescence: racemose.
Flower : bisexual, zygomorphic, irregular, hermaphrodite, white or pink, complete, hypogynous to perigynous.
Calyx : sepals five, gamosepalous, ascending, imbricate aestivation, campanulate calyx tube.
Corolla : petals five, polypetalous, vexillary aestivation, papilionaceous, consisting of a posterior standard or vexillum two lateral wings or alae, two anterior ones forming a keel.
Androecium : 10 stamens in two bundles (diadelphous) of (9) + 1, anthers dithecous (bilobed), basifixed, introrse.
Gynoecium : ovary superior, monocarpellary, unilocular with many ovules, marginal placentation, style bent and long, stigma simple and-hairy.
Fruit : legume; seeds one to many, non- endospermic.
Floral formula :  NCERT Solutions For Class 11 Biology Morphology of Flowering Plants Q9.2
NCERT Solutions For Class 11 Biology Morphology of Flowering Plants Q9
Family Solanaceae (e.g., Solanum nigrum) Systematic position:
Class Subclass Series Order Family
Vegetative characters:
Habit: herbs Stem : herbaceous, aerial, erect, cylindrical, branched.
Leaves: alternate, simple, exstipulate, venation reticulate.
Floral characters:
Inflorescence: cymose.
Flower : ebracteate, ebracteolate, bisexual, actinomorphic, white, hypogynous.
Calyx : sepals five, gamosepalous, persistent, valvate aestivation.
Corolla : petals five, gamopetalous, valvate. aestivation.
Androecium : stamens five, epipetalous, polyandrous, anthers large, bithecous and basifixed.
Gynoecium : bicarpellary, syncarpous,
ovary, obliquely placed carpels in the flower, bilocular, axile placentation, placenta swollen with many ovules.
Fruits : berry with persistent calyx.
Floral formula :NCERT Solutions For Class 11 Biology Morphology of Flowering Plants Q9.3
NCERT Solutions For Class 11 Biology Morphology of Flowering Plants Q9.1

10.Describe the various types of placentations found in flowering plants.
Soln.Placenta is a parenchymatous cushion present inside the ovary where ovules are borne. The number, position, arrangement or distribution of placentae inside an ovary is called placentation. The placentation are of different types namely, marginal, axile, parietal, basal and free central.
(i)Marginal placentation : The placenta forms a ridge along the ventral suture of the ovary and the ovules are borne on this ridge forming two rows, e.g., pea.
(ii)Axile placentation : When the placenta is axial and the ovules are attached to it in a multilocular ovary, the placentation is said to be axile, e.g., china rose, tomato and lemon.
(iii)Parietal placentation : The ovules develop on the inner wall of the ovary or on peripheral part. Ovary is one-chambered but it becomes two-chambered due to the formation of the false septum, e.g., mustard and Argemone.
(iv)Free central placentation : When the ovules are borne on central axis and septa are absent, as in Dianthus and primrose the placentation is called free central.
(v)Basal placentation: The placenta develops at the base of ovary and a single ovule is attached to it, as in sunflower, marigold.

11.What is a flower? Describe the parts of a typical angiosperm flower.
Soln.Flower is the reproductive unit in the angiosperms. It is meant for sexual reproduction. A typical flower has four different kinds of whorls arranged successively on the swollen end of the stalk or pedicel, called thalamus or receptacle. These are calyx, corolla, androecium and gynoecium.
Calyx and corolla are accessory organs, while androecium and gynoecium are reproductive organs. In some flowers like lily, the calyx and corolla are not distinct and are termed as perianth. Some flowers have both androecium and gynoecium and are termed hermaphrodite flowers while some flowers have only one of these two whorls.
Calyx : The calyx is the outermost whorl of the flower and its units are called sepals. Generally, sepals are green, leaf like and protect the flower in the bud stage. The calyx may be gamosepalous (sepals united) or polysepalous (sepals free).
Corolla : Corolla is composed of petals. Petals • are usually brightly coloured to attract insects for pollination. Like calyx, corolla may also be free (polypetalous) or united (gamopetalous). The shape and colour of corolla vary greatly in plants. Corolla may be tubular, bell-shaped, funnel-shaped or wheel-shaped.
Androecium : Androecium is the male reproductive part of the flower. It is composed of stamens. Each stamen which represents the male reproductive organ consists of a stalk or a filament and an anther. Each anther is usually bilobed and each lobe has two chambers, the pollen-sacs. The pollen grains are produced in pollen-sacs. A sterile stamen is called staminode.
Gynoecium : Gynoecium is the female reproductive part of the flower and is made up of one or more carpels. A carpel consists of three parts namely stigma, style and ovary. Ovary is the enlarged basal part, on which lies the elongated tube, the style. The style connects the ovary to the stigma. The stigma is usually at the tip of the style and is’ the receptive surface for pollen grains. Each ovary bears one or more ovules attached to a flattened, cushion-like placenta. When more than one carpel is present, they may be free (as in lotus and rose) and are called apocarpous. They are termed syncarpous when carpels are fused, as in mustard and tomato. After fertilisation, the ovules develop into seeds and the ovary matures into a fruit.

12. How do the various leaf modifications help plants?
Soln.Leaves perform various functions besides photosynthesis and thus they are modified into different forms such as –
(i)Leaf tendrils: The different parts of a leaf are modified into tendrils which help the plant in climbing up. Parts of leaf modified into tendrils include stipules e.g., Smiiax ; petiole e.g., Clematis ; leaf apex e.g., Gloriosa ; leaflets e.g., Pisum; whole leaf e.g., Lathyrus.
(ii)Leaf spines: Either for the protection of plant or to lessen the rate of transpiration in xerophytic plants, the leaves modify into sharp, pointed spines. Parts of leaf modified into leaf spines include stipules e.g., Zizyphus; leaf margins e.g., Argemone; leaf apex e.g.r Yucca; entire leaf e.g., Berberis.
(iii)Phyllode: Petioles modify into leaf¬like green, photosynthesising structure e.g., Parkinsonia, Acacia auriculiformis.
(iv)Scale or protective leaves : The leaves modify into hard scaly leaves which protect the vegetative bud by covering them, e.g., Ficus, Artocarpus, Casuarina, etc.
(v) Leaf hooks : They help in climbing e.g., Bignonia.
(vi)Leaf roots : A leaf transforms into roots for balancing on water e.g., Salvinia.
(vii)Leaf pitchers : Leaf is modified into pitcher e.g., Nepenthes (insectivorous), Dischidia (non-insectivorous).
(viii)Leaf bladder: The leaves modify to form bladder like structure which trap insects and then it is closed by a valve present on the mouth of bladder e.g., Utricularia (bladderwort).
(ix) Leaf tentacles: The leaf of sundew plant, Drosera bear minute hairs which have shinning, sticky substance at their tips (tentacles). When any insect sits on the leaf, it is covered by these hairs.

13. Define the term inflorescence. Explain the basis for the different types of inflorescence in flowering plants.
Soln. The arrangement of flowers on the floral axis is termed as inflorescence. A flower is a modified shoot wherein internodes do not elongate and the axis gets condensed. The apex produces different kinds of floral appendages laterally at successive nodes instead of leaves. When a shoot tip transforms into a flower, it is always solitary. Depending on whether the apex gets converted into a flower or continues to grow, two major types of inflorescence are defined – racemose and cymose. In racemose type of inflorescence the main axis continues to grow, the flowers are borne laterally in acropetal succession. In cymose type of inflorescence the main axis terminates in a flower, hence is limited in growth. The flowers are borne in a basipeta! order.

14. Write the floral formula of an actinomorphic, bisexual, hypogynous flower with five united sepals, five free petals, five free stamens and two united carples with superior ovary and axile placentation.
Soln. The floral formula for actinomorphic, bisexual, hypogynous flower with five united sepals, five free petals, five free stamens and two united carples with superior ovary and
axile placentation is:

15.Describe the arrangement of floral members in relation to their insertion on thalamus.
Soln. In a typical flower, the floral members like calyx, corolla, androecium and gynOecium are arranged over the thalamus! Based on the position of calyx, corolla and androecium in respect to ovary on thalamus, the flowers are described as hypogynous, perigynous and epigynous ones. In the hypogynous flower the gynoecium occupies the highest position while the other parts are situated below it. The ovary in such flowers is said to be superior, e.g., mustard, china rose and brinjal. If gynoecium is situated in the centre and other parts of the flower are located on the rim of the thalamus almost at the same level, it is called perigynous. The ovary here is said to be half inferior or sub superior, e.g., plum, rose, peach. In epigynous flowers, the margin of thalamus grows upward enclosing the ovary completely and gets fused with it; the other parts of flower arise above the ovary. Hence, the ovary is said to be inferior as in flowers of guava and cucumber, and the ray florets of sunflower.

NCERT Solutions For Class 11 Biology Chapter 1 The Living World

NCERT Solutions For Class 11 Biology Chapter 1 The Living World

Topics and Subtopics in NCERT Solutions for Class 11 Biology Chapter 1 The Living World:

Section Name Topic Name
1 The Living World
1.1 What is ‘Living’?
1.2 Diversity in the Living World
1.3 Taxonomic Categories
1.4 Taxonomical Aids
1.5 Summary

NCERT Solutions Class 11 BiologyBiology Sample Papers

NCERT TEXTBOOK QUESTIONS SOLVED

1. Why are living organisms classified?
Soln. Living organisms are classified because of the following reasons:
(i) Easy identification.
(ii)Study of organisms of other places.
(iii)Study of fossils
(iv)Grouping helps in study of all types of organisms while it is impossible to study individually all of them.
(v) Itbringsoutsimilaritiesanddissimilarities. They help in knowing relationships among different groups.
(vi)Evolution of various taxa can be known.

2. Why are the classification systems changing every now and then?
Soln. From very early days till now biologists use several characters for classification system. These are morphology, anatomy, cytology, physiology, ontogeny, phylogeny, reproduction, biochemistry, etc. But day by day biologists are learning something new about organisms from their fossil records and using” advanced study techniques such as molecular phylogeny, etc. So their point of view about classification keeps changing. Thus the system of classification is modified every now and then.

More Resources for CBSE Class 11

3. What different criteria would you choose to classify people that you meet often?
Soln. The various criteria that may be chosen to classify people whom we meet often include behaviour, geographical location, morphology, family members, relatives, friends etc.

4. What do we learn from identification of individuals and populations?
Soln. The knowledge of characteristic of an individual or its whole population helps in identification of similarities and dissimilarities among the individuals of same kind or between different types of organisms. It helps us to classify the organisms in various categories depending upon these similarities and dissimilarities.

5. Given below is the scientific name of mango. Identify the correctly written name.
Mangifera Indica Mangifera indica
Soln. The correctly written scientific name of mango is Mangifera indica.

6. Define a taxon. Give some example of taxa at different hierarchical levels.
Slon. A taxonomic unit in the biological system of classification of organism is called taxon (plural taxa). For example a phylum, order, family, genus or species represents taxon. It represents a rank. For example, all the insects form a taxon. Taxon of class category for birds is Aves and taxon of Phylum category for birds is Chordata. The degree of relationship and degree of similarity varies with the rank of the taxon. Individuals of a higher rank, say Order or Family, are less closely related than those of a lower rank, such as Genus or Species.

7. Can you identify the correct sequence of taxonomical categories?
(a) Species —> Order —> Phylum —> Kingdom
(b) Genus—) Species—> OrderKingdom
(c) Species —> Genus —>Order —> Phylum
Slon. The correct sequence of taxonomical categories is
(c) i.e., Species —>Genus —> Order —> Phylum.

8. Try to collect all the currently accepted meanings for the word ‘species’. Discuss with your teacher the meaning of species in case of higher plants and animals on one hand, and bacteria on the other hand.
Slon. Species occupies a key position in classification. It is the lowest taxonomic category. It is a natural population of individuals or group of populations which resemble one another in all essential morphological and reproductive characters so that they are able to interbreed freely and produce fertile offsprings. Each species is also called genetically distinct and reproductively isolated natural population. Mayr (1964) has defined species as “a group of actually or potentially interbreeding populations that are reproductively isolated from other such groups”.
In higher plants and animals the term ‘species’ refers to a group of individuals that are able to interbreed freely and produce fertile offsprings. But, in case of bacteria interbreeding cannot serve as the best criteria for delimiting species because bacteria usually reproduce asexually. Conjugation, transformation and transduction, which are termed as sexual reproduction methods in bacteria, also do not correspond to true interbreeding. Thus, for bacteria many other characters such as molecular homology, biochemical, physiological, ecological and morphological characters are taken into consideration while classifying them.

9. Define and understand the following terms:
(i) Phylum (ii) Class (iii) Family
(iv) Order (v) Genus
Slon. (i) Phylum – Phylum is a category higher than that of Class. The term Phylum is used for animals. A Phylum is formed of one or more classes, e.g., the Phylum Chordata of animals contains not only the class Mammalia but also Aves (birds), Reptilia (reptiles), Amphibia (amphibians), etc. In plants the term Division is used in place of Phylum.
(ii) Class – A Class is made of one or more related Orders. For example, the Class Dicotyledoneae of flowering plants contains all dicots which are grouped into several orders (e.g., Rosales, Sapindales, Ranales, etc.).
(iii) Family, – It is a taxonomic category which contains one or more related genera. All the genera of a family have some common features or correlated characters. They are separable from genera of a related family by important and characteristic differences in both vegetative and reproductive features. E.g., the genera of cats (Fells) and leopard (Panthera) are included in the Family Felidae. The members of Family Felidae are quite distinct from those of Family Canidae (dogs, foxes, wolves).
Similarly, the family Solanaceae contains a number of genera like Solanum, Datura, Petunia and Nicotiana. They are distinguishable from the genera of the related family Convolvulaceae (Convolvulus, Ipomoea).
(iv) Order – The category includes one or more related families. E.g., the plant Family Solanaceae is placed in the Order Polemoniales alongwith four other related families (Convolvulaceae, Boraginaceae, Hydrophyllaceae and Polemoniaceae). Similarly, the animal families Felidae and Canidae are included under the Order Carnivora alongwith Hyaenidae (hyaenas) and Ursidae (bears).
(v) Genus – It is a group or assemblage of related species which resemble one another in certain correlated characters. Correlated characters are those similar or common features which are used in delimitation of a taxon above the rank of species. All the species of genus are presumed to have evolved from a common ancestor. A genus may have a single living species e.g., Genus Homo. Its species is Homo sapiens – the living or modem man. The Genus Felis has many species, e.g., F. domestica – common cat, F. chaus (jungle cat) etc.

lO.How is a key helpful in the identification and classification of an organism?
Slon.‘Key is an artificial analytic device having a list of statements with dichotomic table of alternate characteristics. Taxonomic
keys are aids for rapid identification of unknown plants and animals based on
the similarities and dissimilarities. Keys are primarily based on stable and reliable characters. The keys are helpful in a faster preliminary identification which can bebacked up by confirmation through comparison with detailed description of the taxon provisionally identified with. Separate taxonomic keys are used for each taxonomic category like Family, Genus and Species.

11.Illustrate the taxonomical hierarchy with suitable examples of a plant and an animal.
Slon. The arrangement of various taxa in a hierarchical order is called taxonomic hierarchy. The hierarchy indicates the various levels of kinship. The number of similar characters of categories decreases from lowest rank to highest rank. The hierarchical system of classification was introduced by Linnaeus.
The hierarchy of major categories is:
Species —►Genus-►Family —► Order—► Class
Kingdom -4— Phylum or Division
Increasing specificity – ► Decreasing specificity
Classification of a plant (Wheat):
Kingdom  –  Plantae
Division   –  Angiospermae
Class         –  Monocotyledonae
Order        –  Poales
Family      –  Poaceae
Genus       – Triticum
Species     –  aestivum
Classification of an animal (Housefly):
Kingdom  –   Animalia
Phylum    –   Chordata
Class        –   Insecta
Order       –   Diptera
Family     –  Muscidae
Genus      –   Musca
Species    –   domestica

NCERT Solutions For Class 11 Biology Cell Cycle and Cell Division

NCERT Solutions For Class 11 Biology Cell Cycle and Cell Division

Topics and Subtopics in NCERT Solutions for Class 11 Biology Chapter 10 Cell Cycle and Cell Division:

Section Name Topic Name
10 Cell Cycle and Cell Division
10.1 Cell Cycle
10.2 M Phase
10.3 Significance of Mitosis
10.4 Meiosis
10.5 Significance of Meiosis
10.6 Summary

NCERT Solutions Class 11 BiologyBiology Sample Papers

NCRT TEXTBOOK QUESTIONS SOLVED

1. What is the average cell cycle span for a mammalian cell?
Solution: 24 hours.

2. Distinguish cytokinesis from karyokinesis.
Solution: Differences between cytokinesis and karyokinesis are:
NCERT Solutions For Class 11 Biology Cell Cycle and Cell Division Q2

More Resources for CBSE Class 11

3. Describe the events taking place during the interphase.
Solution: The interphase, though called the resting phase, is metabolically quite active. It is the time during which the cell prepares itself for division by undergoing both cell growth and DNA replication in an orderly manner. The interphase is further divided into three phases:
• G1 (Gap 1) phase
• S (Synthesis) phase
• G2 (Gap 2) phase
G1 phase corresponds to the interval between mitosis of previous cell cycle and initiation of DNA replication. During G1 phase the cell is metabolically active and grows continuously but does not replicate its DNA S or synthesis phase marks the period during which DNA synthesis or replication takes place. During this time the amount of DNA doubles per cell. In animal cells, during the S phase, DNA replication occurs in the nucleus, and the centriole duplicates in the cytoplasm. During the G2 phase synthesis of DNA stops while cell growth continues with synthesis of protein and RNA in preparation for mitosis.

4. What is G0 (quiescent phase) of cell cycle?
Solution: G0 phase is the phase of inactivation of cell cycle due to non-availability of mitogens and energy rich compounds. Cells in this stage remain metabolically active but no longer proliferate i.e., do not grow or differentiate unless called on to do so depending on the requirement of the organism. E.g., Nerve and heart cells of chordates are in permanent G0 phase.

5. Why is mitosis called equational division?
Solution: Mitosis is a type of cell division in which chromosomes replicate and become equally distributed in two daughter nuclei so that the daughter cells come to have the same number and type of chromosomes as present in parent cell. So mitosis is called as equational division.

6. Name the stage of cell cycle at which each one of the following events occur:
(i) Chromosomes are moved to spindle equator.
(ii) Centromere splits and chromatids separate.
(iii) Pairing between homologous chromosomes takes place.
(iv) Crossing over between homologous chromosomes takes place.
Solution: 
(i) Metaphase
(ii) Anaphase
(iii) Zygotene of prophase I of meiosis 1
(iv) Pachytene of prophase I of meiosis I

7. Describe the following:
(a) Synapsis
(b) Bivalent
(c) Chiasmata
Draw a diagram to illustrate your answer.
Solution: 
(a) Synapsis: During zygotene of prophase I stage homologou s chromosomes start pairing together and this process of association is called synapsis. Electron micrographs of this stage indicate that chromosome synapsis is accompanied by the formation of complex structure called synaptonemal complex.
(b) Bivalent: The complex formed by a pair of synapsed homologous chromosomes is called a bivalent or a tetrad i.e., 4 chromatids or a pair of chromosomes.
NCERT Solutions For Class 11 Biology Cell Cycle and Cell Division Q7
(c) Chiasmata: The beginning of diplotene is recognized by the dissolution of the synaptonemal complex and the tendency of the synapsed homologous chromosomes of the bivalents to separate from each other except at the sites of crossovers. These points of attachment (X-shaped structures) between the homologous chromosomes are called chiasmata.

8. How does cytokinesis in plant cells differ from that in animal cells?
Solution: Plant cytokinesis and animal cytokinesis differ in following respects:
NCERT Solutions For Class 11 Biology Cell Cycle and Cell Division Q8

9. Find examples where the four daughter cells from meiosis are equal in size and where they are found unequal in size.
Solution: During formation of male gametes (i.e., spermatozoa) in a typical mammal (i.e., human being), the four daughter cells formed from meiosis are equal in size. On the other hand, during formation of female gamete (i.e., ovum) in a typical mammal (i.e., human being), the four daughter cells are unequal in size.

10. Can there be DNA replication without cell division?
Solution: Yes. Endomitosis is the multiplication of chromosomes present in a set in nucleus without karyokinesis and cytokinesis result-ing in numerous copies within each cell. It is of 2 types.
Polyteny: Here chromosomes divide and redivide without separation of chromatids so that such chromosomes become multistranded with many copies of DNA. Such polytene (many stranded) chromosomes remain in permanent prophase stage and do not undergo cell cycle e.g., polytene (salivary glands) chromosome of Drosophila has 512- 1024 chromatids. Here number of sets of chromosomes does not change.
Polyploidy (endoduplication) : Here all chromosomes in a set divide and its chromatids separate but nucleus does not divide. This results in an increase in number of sets of chromosomes in the nucleus (4x, 8x….). This increase in sets of chromosomes is called polyploidy. It can be induced by colchicine and granosan. These chromosomes are normal and undergo cell cycle.

11. List the main differences between mitosis and meiosis.
Solution: 
NCERT Solutions For Class 11 Biology Cell Cycle and Cell Division Q11

12. Distinguish anaphase of mitosis from anaphase I of meiosis.
Solution: Anaphase of mitosis : It is the phase of shortest duration. APC (anaphase promoting complex) develops. It degenerates proteins -binding the two chromatids in the region of centromere. As a result, the centromere of each chromosome divides. This converts the two chromatids into daughter chromosomes each being attached to the spindle pole of its side by independent chromosomal fibre. The chromosomes move towards the spindle poles with the centromeres projecting towards the poles and the limbs trailing behind. There is corresponding shortening of chromosome fibres. The two pole-ward moving chromosomes of each type remain attached to each other by interzonal fibres. Ultimately, two groups of chromosomes come to lie at the spindle poles.
NCERT Solutions For Class 11 Biology Cell Cycle and Cell Division Q12
Anaphase I of meiosis : Chiasmata disappear completely and the homologous chromosomes separate. The process is called disjunction. The separated chromosomes (univalents) show divergent chromatids and are called dyads. They move towards the spindle poles and ultimately form two groups of haploid chromosomes.
NCERT Solutions For Class 11 Biology Cell Cycle and Cell Division Q12.1

13. What is the significance of meiosis?
Solution: The significance of meiosis is given below:
(i) Formation of gametes – Meiosis forms gametes that are essential for sexual reproduction.
(ii) Genetic information – It switches on the genetic information for the development of gametes or gametophytes and switches off the sporophytic information. ‘
(iii) Maintenance of chromosome number – Meiosis maintains the fixed number of chromosomes in sexually reproducing organisms by halving the same. It is essential since the chromosome number becomes double after fertilisation.
(iv) Assortment of chromosomes – In meiosis paternal and maternal chromosomes assort independently. It causes reshuffling of chromosomes and the traits controlled by them. The variations help the breeders in improving the races of useful plants and animals.
(v) Crossing over – It introduces new combination of traits or variations.
(vi) Mutations – Chromosomal and genomic mutations can take place by irregularities of meiotic divisions. Some of these mutations are useful to the organism and are perpetuated by natural selection.
(vii) Evidence of basic relationship of organisms – Details of meiosis are essentially similar in the majority of organisms showing their basic similarity and relationship.

14. Discuss with your teacher about
(i) haploid insects and lower plants where cell division occurs, and
(ii)some haploid cells in higher plants where cell division does not occur.
Solution: 
(i) Cell division occurs in haploid insect, such as drones of honey bee and lower plant like gametophyte of algae, bryophytes, and pteridophytes.
(ii) Synergids and antipodals in embryo sac of ovule are haploid cells where cell division does not occur.

15. Can there be mitosis without DNA replication in S-phase?
Solution: No there cannot be any mitotic division without-DNA replication in ‘S’ phase.

16. Analyse the events during every stage of ceil cycle and notice how the following two parameters change.
(i) number of chromosomes (N) per cell
(ii) amount of DNA content (C) per cell
Solution: Number of chromosomes and amount of DNA change during S-phase and anaphase of cell cycle. S or synthesis phase marks the period during which DNA synthesis or replication takes place. During this time the amount of DNA per cell doubles. If the initial amount of DNA is denoted as 2C then it increases to 4C. However, there is no increase in the chromosome number; if the cell had diploid or 2N number of chromosomes at G„ even after S phase the number of chromosomes remains the same, i.e., 2N.
In mitotic anaphase, number of chromosomes remains the same. It is only sister chromatids which move towards their respective poles. DNA content remains unchanged. In anaphase I of meiosis, number of chromosomes are reduced to half, i.e., from 2N to IN and also DNA content decrease to one half i.e., from 4C to 2C. In anaphase II of meiosis II DNA content decreases to one half from 2C to 1C but chromosome number remain same.

NCERT Solutions For Class 11 Biology Breathing and Exchange of Gases

NCERT Solutions For Class 11 Biology Breathing and Exchange of Gases

Topics and Subtopics in NCERT Solutions for Class 11 Biology Chapter 17 Breathing and Exchange of Gases:

Section Name Topic Name
17 Breathing and Exchange of Gases
17.1 Respiratory Organs
17.2 Mechanism of Breathing
17.3 Exchange of Gases
17.4 Transport of Gases
17.5 Regulation of Respiration
17.6 Disorders of Respiratory System
17.7 Summary

NCERT TEXTBOOK QUESTIONS FROM SOLVED

1. Define vital capacity. What is its significance?
Solution: Vital capacity is defined as the maximum volume of air a person can breathe in after a forced expiration or the maximum volume of air a person can breathe out after a forced inspiration. It represents the maximum amount of air one can renew in the respiratory system in a single respiration. Thus, greater the vital capacity more is the energy available to the body.

2. State the volume of air remaining in the lungs after a normal breathing.
Solution: When a person breathes normally, the amount which remains in the lung after normal expiration, is called functional residual capacity. It is the sum of residual volume and the expiratory reserve volume (FRC = RV + ERV). It is about 2100 – 2300 mL of air.

More Resources for CBSE Class 11

3. Diffusion of gases occurs in the alveolar region only and not in the other parts of respiratory system. Why?
Solution: For efficient exchange of gases, respi: atory surface must have certain characteristics such as (i) it must be thin, me ist and permeable to respiratory gases (ii) it must have large surface area, (iii) it must be highly vascular. Only alveolar region has these characteristics. Thus, diffusion of gases occurs in this region only.

4. What are the major transport mechanisms for CO2? Explain.
Solution: Nearly 20-25 percent of CO2 is transported by haemoglobin of RBCs, 70 percent of it is carried as bicarbonate ion in
plasma and about 7 percent of CO2 is carried in a dissolved state through plasma. CO2 is carried by haemoglobin as carbamino- haemoglobin. This binding is related to the partial pressure of CO2.

5. What will be the p02 and pCO2 in the atmospheric air compared to those in the alveolar air?
(i) pO2 lesser, pCO2 higher
(ii) pO2 higher, pCO2 lesser
(iii) pO2 higher, pCO2 higher
(iv) pO2 lesser, pCO2 lesser
Solution: (ii) Air that has entered the alveoli through the bronchioles is called alveolar air. It has the same partial pressure of CO2 and 02 as is in the atmospheric air. Then, there occurs gaseous exchange between the adjacent blood capillaries and the alveoli. CO2 diffuses from blood into the alveolar air and O2 diffuses from alveolar air to the blood. As a result, new alveolar air has higher pCO2and lesser pO2, than the atmospheric air.

6. Explain the process of inspiration under normal conditions.
Solution: Inspiration is a process by which fresh air enters the lungs. The diaphragm, intercostal muscles and abdominal muscles play an important role. The muscles of the diaphragm and external intercostal muscles are principle muscles of inspiration. Volume of thoracic cavity increases by contraction of diaphragm and external intercostal muscles. During inspiration, relaxation of abdominal muscles also occurs which allows compression of the abdominal organs by diaphragm. Thus, overall volume of the thoracic cavity increases and as a result, there is a decrease of the air pressure in the lungs. The greater pressure outside the body now causes air to flow rapidly into the lungs. The sequence of air flow is.

7. How is respiration regulated?
Solution: Respiration is under both nervous and chemical regulation.
The respiratory centre in brain is composed of groups of neurons located in the medulla oblongata and pons varolii. The respiratory centre regulates the rate and depth of the breathing.
Dorsal respiratory group of neurons are located in the dorsal portion of the medulla oblongata. This group of neurons mainly causes inspiration.
Ventral group of neurons are located in the ventrolateral part of the medulla oblongata. These can cause either inspiration or expiration.
Pneumotaxic centre is located in the dorsal part of pons varolii. It sends signals to all the neurons of dorsal respiratory group and only to inspiratory neurons of ventral respiratory group. Its job is primarily to limit inspiration. Chemically, respiration is regulated by the large numbers of chemoreceptors located in the carotid bodies and in the aortic bodies. Excess carbon dioxide or hydrogen ions mainly stimulate the respiratory centre of the brain and increases the inspiratory and expiratory-signals to the respiratory muscles. Increased C02 lowers the pH resulting in acidosis. The role of oxygen in the regulation of respiratory rhythm is quite insignificant.

8. What is the effect of pCO2on oxygen transport?
Solution: Increase in pCO2 tension in blood brings rightward shift of the oxygen dissociation curve of haemoglobin thereby decreasing the affinity of haemoglobin for oxygen. This effect is called Bohr’s effect. It plays an important role in the release of oxygen in the tissues.

9. What happens to the respiratory process in a man going up a hill?
Solution: Rate of breathing will increase in order to supply sufficient oxygen to blood because air in mountainous region is deficient in oxygen.

10. What is the site of gaseous exchange in an insect?
Solution: Tracheae (Tracheal respiration) is the site of gaseous exchange in an insect. .

11. Define oxygen dissociation curve. Can you suggest any reason for its sigmoidal pattern?
Solution: The relationship between the partial pressure of oxygen (pO2) and percentage saturation of the haemoglobin with oxygen (O2)is graphically illustrated by a curve called oxygen haemoglobin dissociation curve (also called oxygen dissociation curve).
The sigmoidal pattern of oxygen haemoglobin dissociation curve is the result of two properties which play significant role in the transport of oxygen. These two properties are:
(i) Minimal loss of oxygen from haemoglobin occurs above p02 of 70-80 mm Hg despite significant changes in tension of oxygen beyond this. This is depicted by relatively flat portion of the curve.
(ii)Any further decline in p02 from 40 mm Hg causes a disproportionately greater release of oxygen from the haemoglobin. It results in the steeper portion of the curve and causes the curve to be sigmoid.

12. Have you heard about hypoxia? Try to gather information about it, and discuss with your friends.
Solution: Hypoxia is a condition of oxygen shortage in the tissues. It is of two types:
(i) Artificial hypoxia: It results from shortage of oxygen in the air as at high altitude. It causes mountain sickness characterised by breathelessnes, headache, dizziness and bluish tinge on skin.
(ii) Anaemic hypoxia: It results from the reduced oxygen carrying capacity of the blood due to anaemia or carbon monoxide poisoning. In both cases, less haemoglobin is available for carrying 02.

13. Distinguish between
(a) IRV and ERV
(b) Inspiratory capacity and expiratory capacity.
(c) Vital capacity and total lung capacity.
Solution:
(a) Differences between IRV and ERV are as follows:
NCERT Solutions For Class 11 Biology Breathing and Exchange of Gases Q13
(b)Differences between inspiratory capacity and expiratory capacity are as follows:
NCERT Solutions For Class 11 Biology Breathing and Exchange of Gases Q13.1
(c) Differences between vital capacity and total lung capacity are as follows:
NCERT Solutions For Class 11 Biology Breathing and Exchange of Gases Q13.2

14. What is tidal volume? Find out the tidal volume (approximate value) for a healthy human in an hour.
Solution: Tidal volume is the volume of air inspired or expired with each normal breath. This is about 500 mL in an adult person. It is composed of about 350 mL of alveolar volume and about 150 mL of dead space volume. The alveolar volume consists of air that reaches the respiratory surfaces of the alveoli and engages in gas exchange. The dead space volume consists of air that does not reach the respiratory surfaces.
A healthy man can inspire or expire approximately 6000 to 8000 mL of air per minute. Therefore, tidal volume for a healthy human in an hour is 360 – 480 mL of air.

NCERT Solutions For Class 11 Biology Body Fluids and Circulation

NCERT Solutions For Class 11 Biology Body Fluids and Circulation

Topics and Subtopics in NCERT Solutions for Class 11 Biology Chapter 18 Body Fluids and Circulation:

Section Name Topic Name
18 Body Fluids and Circulation
18.1 Blood
18.2 Lymph (Tissue Fluid)
18.3 Circulatory Pathways
18.4 Double Circulation
18.5 Regulation of Cardiac Activity
18.6 Disorders of Circulatory System
18.7 Summary

NCERT TEXTBOOK QUESTIONS FROM SOLVED

1. Name the components of the formed elements in the blood and mention one major function of each of them.
Solution: Blood corpuscles are the formed ele-ments in the blood, they constitute 45% of the blood. Formed elements are – (erythrocytes, RBCs or red blood corpuscles), (leucocytes, WBCs or white blood corpuscles) and throm¬bocytes or blood platelets. The major function of RBCs is to transport oxygen from lungs to body tissues and COz from body tissues to the lungs. White blood cells provide immunity to the body. Blood platelets play important role in blood clotting.

2. What is the importance of plasma proteins?
Solution: Plasma proteins constitute about 7 to 8% of plasma. These mainly include albumin, globulin, prothrombin and fibrinogen. Prothrombin and fibrinogen are needed for blood clotting. Albumins and globulins retain water in blood plasma and helps in maintaining osmotic balance. Certain globulins

More Resources for CBSE Class 11

3. Match Column I with Column II.
Column I                          Column II
(a) Eosinophils               (i) Coagulation
(b) RBC                            (ii) Universal recipient
(c) AB Group                  (iii) Resist infections
(d) Platelets                    (iv) Contraction of heart
(e) Systol                         (v) Gas transport
Solutlion.(a) – (iii); (b) – (v); (c) – (ii); (d) – (i); (e) – (iv).

4. Why do we consider blood as a connective tissue?
Solution: A connective tissue connects different tissues or organs of the body. It consists of living cells and extracellular matrix. Blood is vascular connective tissue, it is a mobile tissue consisting of fluid matrix and free cells. Blood transports materials from one place to the other and thereby establishes connectivity between different body parts.

5. What is the difference between lymph and blood?
Solution: The differences between blood and lymph are given below:
NCERT Solutions For Class 11 Biology Body Fluids and Circulation Q5

6. What is meant by double circulation? What is its significance?
Solution: The type of blood circulation in which oxygenated blood and deoxygenated blood do not get mixed is termed double circulation. It includes systemic circulation and pulmonary circulation. The circulatory pathway of double circulation is given in the following flow chart.
NCERT Solutions For Class 11 Biology Body Fluids and Circulation Q6
Flow chart: Double blood circulation Double circulation or separation of systemic and pulmonary circulations provides a higher metabolic rate to the body and also allows the two circulations to have different blood pressures according to the need of the organs they supply.

7. Write the differences between:
(a) Blood and lymph
(b) Open and closed system of circulation
(c) Systole and diastole
(d) P-wave and T-wave
Solution: (a) Refer answer 5.
(b) The differences between open and closed circulatory system are given below:
NCERT Solutions For Class 11 Biology Body Fluids and Circulation Q7

NCERT Solutions For Class 11 Biology Body Fluids and Circulation Q7.1
(c) Systole is contraction of heart chambers in order to pump out blood while diastole is relaxation of heart chambers to receive blood. The contraction of a chamber or systole decreases its volume and forces the blood out of it, whereas its relaxation or diastole brings it back to its original size to receive more blood.
(d) P wave is a small upward wave of elec-trocardiograph that indicates the atrial depolarisation (contraction of atria). It is caused by the activation of SA node. T-wave is a dome shaped wave of electro-cardiograph which represents ventricular repolarisation (ventricular relaxation).

8. Describe the evolutionary change in the pattern of heart among the vertebrates.
Solution: Vertebrates have a single heart. It is a hollow, muscular organ composed of cardiac muscle fibres. Two types of chambers in heart are atria and ventricles. The heart of lower vertebrates have additional chambers, namely sinus venosus and conus arteriosus or bulbus arteriosus or truncus arteriosus. During the course of development, in higher vertebrates, the persistent portions viz, auricles and ventricles are retained. However, these get complicated by incorporating several valves inside them and becoming compartmentali sed.
In fishes, heart is two chambered (1 auricle and 1 ventricle). Both the accessory chambers, sinus venosus and conus arteriosus are present. The heart pumps out deoxygenated blood which is oxygenated by the gills and sent to the body parts from where deoxygenated blood is carried to the heart. It is called single circulation and heart is called venous heart. Lung fish, amphibians and reptiles have three chambered heart, (2 auricles and 1 ventricle). The left atrium gets oxygenated blood from the gills/lungs/skin/buccopharyngeal cavity and the right atrium receives the deoxygenated blood from other body parts. But both oxygenated and deoxygenated blood get mixed up in single ventricle which pumps out mixed blood. This is called incomplete double circulation.
Crocodiles, birds and mammals have a complete four chambered heart (right and left auricles; right and left ventricles). Oxygenated and deoxygenated blood never get mixed. Right parts of the heart receive deoxygenated blood from all other body parts and send it to lungs for oxygenation whereas left parts of heart receive oxygenated blood from lungs and send it to other body parts. This mode of circulation is termed as complete double circulation which includes systemic and pulmonary circulation. There are no accessory chambers in heart of birds and mammals.

9. Why do we call our heart myogenic?
Solution: The heart of molluscs and vertebrates including humans is myogenic. It means heart beat is initiated in heart itself by a patch of modified heart muscle called sino-atrial node or pacemaker which lies in the wall of the right atrium near the opening of the superior vena cava.

10. Sino-atrial node is called the pacemaker of our heart. Why?
Solution: Sino-atrial node (SAN) is a mass of neuromuscular tissue which lies in the wall of right atrium. It is responsible for initiating and maintaining the rhythmic contractile activity of the heart. Therefore, it is called the pacemaker.

11. What is the significance of atrio-ventricular node and atrio-ventricular bundle in the functioning of heart?
Solution: atrio-ventricular node (AVN) is a mass of neuromuscular tissue, which is situated in wall of. right atrium, near the base of inter-atrial septum. AV node is the pacesetter of the heart,- as it transmits the impulses initiated by SA node to all parts of ventricles. Atrio-ventricular bundle (A-V bundle) or bundle of His is a mass of specialised fibres which originates from the AVN. Within the myocardium of the ventricles the branches of bundle of His divide into a network of fine fibres called Purkinje fibres. The bundle of His and the Purkinje fibres convey impulse of contraction from the AVN to the myocardium of the ventricles.

12. Define a cardiac cycle and the cardiac output.
Solution: The sequential events in the heart which are repeated cyclically is called cardiac cycle and it consists of systole (contraction) and diastole (relaxation) of both the atria and ventricles. The duration of a cardiac cycle is 0.8 seconds. Periods of cardiac cycle are atrial systole (0.1 second), ventricular systole (0.3 second) and complete cardiac diastole (0.4 second).
The amount of blood pumped by heart per minute is called cardiac output. It is calculated by multiplying stroke volume (volume of blood pumped by each ventricle per minute) with heart rate (number of beats per minute). The heart of normal person beats 72 times per minute and pumps out about 70 mL of blood per beat. Therefore, cardiac output averages 5000 mL or 5 litres.

13. Explain heart sounds.
Solution: The beating of heart produces characteristic sounds which can be heard by using stethoscope. In a normal person, two sounds are produced per heart beat. The first heart sound Tubb’ is low pitched, not very loud and of long duration. It is caused partly by the closure of the bicuspid and tricuspid valves and partly by the contraction of muscles in the ventricles.
The second heart sound ‘dubb’ is high pitched, louder, sharper and shorter in duration. It is caused by the closure of the semilunar valves and marks the end of ventricular systole.

14. Draw a standard ECG and explain the different segments in it.
Solution: ECG is graphic record of the electric current produced by the excitation of the cardiac muscles. The instrument used to record the changes is an electrocardiograph. A normal electrogram (ECG) is composed of a P wave, a QRS wave (complex) and a T wave. The P Wave is a small upward wave that represents electrical excitation or the atrial depolarisation which leads to contraction of both the atria (atrial contraction). It is caused by the activation of SA node. The impulses of contraction start from the SAnode and spread throughout the artia.
The QRS Wave (complex) represents ventricular depolarisation (ventricular contraction). It is caused by the impulses of the contraction from AV node through the bundle of His and Purkinje fibres and the contraction of the ventricular muscles. Thus this wave is due to the spread of electrical impulse through the ventricles.
The T Wave represents ventricular repolarisation (ventricular relaxation). The potential generated by the recovery of the ventricle from the depolarisation state is called the repolarisation wave. The end of the T-wave marks the end of systole.
ECG gives accurate information about the heart. Therefore, ECG is of great diagnostic value in cardiac diseases.
NCERT Solutions For Class 11 Biology Body Fluids and Circulation Q14

NCERT Solutions For Class 11 Biology Excretory Products and their Elimination

NCERT Solutions For Class 11 Biology Excretory Products and their Elimination

Topics and Subtopics in NCERT Solutions for Class 11 Biology Chapter 19 Excretory Products and their Elimination:

Section Name Topic Name
19 Excretory Products and their Elimination
19.1 Human Excretory System
19.2 Urine Formation
19.3 Function of the Tubules
19.4 Mechanism of Concentration of the Filtrate
19.5 Regulation of Kidney Function
19.6 Micturition
19.7 Role of other Organs in Excretion
19.8 Disorders of the Excretory System
19.9 Summary

NCERT Solutions Class 11 BiologyBiology Sample Papers

NCERT TEXTBOOK QUESTIONS FROM SOLVED

1.Define Glomerular Filtration Rate (GFR).
Solution. The amount of filtrate formed by the kidneys per minute is called glomerular filtration rate (GFR). It is approximately 125 mL/min. in a healthy person.

2.Explain the autoregulatory mechanism of GFR.
Solution. The kidneys have built-in mechanisms for the regulation of glomerular filtration rate. One such efficient mechanism is carried out by juxta glomerular apparatus (JGA). JGA is a special sensitive region formed by cellular modifications in the distal convoluted tubule and the afferent arteriole at the location of their contact. A fall in GFR can activate the JG cells to release renin which can stimulate the glomerular blood flow and thereby the GFR back to normal.

More Resources for CBSE Class 11

3.Indicate whether the following statements are true or false.
(a) Micturition is carried out by a reflex.
(b) ADH helps in water elimination, making the urine hypotonic.
(c) Protein-free fluid is filtered from blood plasma into the Bowman’s capsule.
(d) Henle’s loop plays an important role in concentrating the urine.
(e) Glucose is actively reabsorbed in the proximal convoluted tubule.
Solution.(a) True (b) False (c) True (d) True (e) True

4.Give a brief account of the counter current mechanism.
Solution. The kidneys have a special mechanism for concentrating the urine, it is called counter current mechanism. The mechanism is said to be a counter current mechanism because the out flow (in the ascending limb) of Henle’s loop runs parallel to and in the opposite direction of the inflow (in the descending limb) and vasa recta. As the mechanism begins to function, the ascending limb of loop of Henle actively transports chloride and sodium ions out into the vasa recta from where it is secreted into the interstitial fluid. As a result the interstitial fluid around the loop of Henle contains large quantities of NaCl. The filtrate passes from the ascending limb of loop of Henle and enters a collecting duct. The collecting duct passes adjacent to the loop of Henle where the interstitial fluid contains large amounts of NaCl. The high osmotic pressure created by NaCl causes water to diffuse out of the collecting duct in the interstitial fluid and eventually to the blood of vasa recta. The filtrate becomes greatly concentrated and is now called urine. A similar counter current mechanism, operates between the interstitial fluid and blood passing through the vasa recta. As the blood capillary runs along the ascending limb of loop of Henle, NaCl diffuses out of the blood. The direction is reversed as the blood capillary passes along the descending limb of Henle. The blood flows in the vasa recta around the loop of Henle from ascending to the descending side while the fluid passing through the loop of Henle goes in the opposite direction. The arrangement helps to maintain the concentration gradient of NaCl.
The ‘overall function of counter current mechanism is to concentrate sodium chloride in the interstitial fluid and thereby cause water to diffuse out of the collecting ducts and concentrate the urine.

5.Describe the role of liver, lungs and skin in excretion.
Solution. Other than the kidneys, lungs, liver and skin also help in the elimination of excretory wastes. Lungs remove large amounts of C02 (18 litres/day) and also significant quantities of water every day. Liver secretes bile which contains substances like bilirubin, biliverdin, cholesterol, degraded steroid hormones, vitamins and drugs. Most of these substances ultimately pass out along with digestive wastes. The sweat and sebaceous glands in the skin can eliminate certain substances through their secretions. Sweat produced by the sweat glands is a watery fluid containing NaCl, small amounts of urea, lactic acid etc. Sebaceous glands eliminate certain substances like sterols, hydrocarbons and waxes through sebum.

6.Explain micturition.
Solution. The process of passing out urine from the urinary bladder is called micturition. Urine formed by the nephrons is ultimately carried to the urinary bladder where it is stored. This causes stretching of the wall of bladder that leads to the stimulation of stretch receptors on the walls of the bladder. This sends signal to the CNS. The CNS passes on motor messages to initiate the contraction of smooth muscles of the bladder and simultaneous relaxation of the urethral sphincter causing the release of urine.

7.Match the items of column I with those of column II.
Column I                                     Column II
(a) Ammonotelism                   (i)Birds
(b) Bowman’s capsule             (ii)Water reabsorption
(c) Micturition                          (iii)Bony fish
(d) Uricotelism                         (iv)Urinary bladder
(e) ADH                                       (v)Renal tubule
Solution. (a) – (iii), (b) – (v), (c) – (iv), (d) – (i), (e) – (ii)

8.What is meant by the term osmoregulation?
Solution. The regulation of water and solute contents of the body fluids by the kidney is called osmoregualtion.

9.Terrestrialanimalsaregenerallyeitherureotelic or uricotelic, not ammonotelic, why?
Solution. Ammonotelic animals are aquatic animals that excrete ammonia which is highly soluble in water, thus large amount of water is also excreted. Terrestrial animals cannot afford to lose such large quantities of water from their bodies as they live in environment having water scarcity. They, therefore, excrete either urea (ureotelic) or uric acid (uricotelic) as these are less soluble in water.

10. What is the significance of juxta glomerular apparatus (JGA) in kidney function?
Solution. Juxta glomerular apparatus (JGA) is a special sensitive region formed by cellular modifications in the distal convoluted tubule and the afferent arteriole at the location of their contact. The JGA plays a complex regulatory role. A fall in glomerular blood flow/ glomerular blood pressure/GFR can activate the JG cells to release renin which converts angiotensinogen in blood to angiotensin I and further to angiotensin II. Angiotensin II, being a powerful vasoconstrictor, increases the glomerular blood pressure and thereby GFR. Angiotensin II also activates the adrenal cortex to release aldosterone. Aldosterone causes reabsorption of Na+ and water from the distal parts of the tubule. This also leads to an increase in blood pressure and GFR.

11 .Name the following.
(a) A chordate animal having flame cells as excretory structures.
(b) Cortical portions projecting between the medullary pyramids in the human kidney.
(c) A loop of capillary running parallel to the Henle’s loop.
Solution. (a) Cephalochordate – Amphioxus
(b) Columns of Bertini
(c) Vasa recta

12.Fill in the gaps.
(a) Ascending limb of Henle’s loop is________to water whereas the descending limb is________to it.
(b) Reabsorption of water from distal parts of the tubules is facilitated by hormone________
(c) Dialysis fluid contains all the constituents as in plasma except________
(d) A healthy adult human excretes (on an average)________gm of urea/day.
Solution.
(a) Ascending limb of Henle’s loop is impermeable to water whereas the descending limb is permeable to it.
(b) Reabsorption of water from distal parts of the tubules is facilitated by hormone ADH.
(c) Dialysis fluid contains all the constituents as in plasma except nitrogenous wastes.
(d) A healthy adult human excretes (on an average) 25 – 30 gm of urea/day.